2024年数学高考大一轮复习第三章 培优课 §3.8 隐零点与极值点偏移问题
展开§3.8 隐零点与极值点偏移问题
隐零点问题是指对函数的零点设而不求,通过一种整体代换和过渡,再结合题目条件最终解决问题;极值点偏移是指函数在极值点左右的增减速度不一样,导致函数图象不具有对称性,隐零点与极值点偏移问题常常出现在高考数学的压轴题中,这类题往往对思维要求较高,过程较为烦琐,计算量较大,难度大.
题型一 隐零点
例1 (2023·郑州模拟)已知函数f(x)=ex+1-+1,g(x)=+2.
(1)求函数g(x)的极值;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)当x>0时,证明:f(x)≥g(x).
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 零点问题求解三步曲
(1)用函数零点存在定理判定导函数零点的存在性,列出零点方程f′(x0)=0,并结合f′(x)的单调性得到零点的取值范围.
(2)以零点为分界点,说明导函数f′(x)的正负,进而得到f(x)的最值表达式.
(3)将零点方程适当变形,整体代入最值式子进行化简证明,有时(1)中的零点范围还可以适当缩小.
跟踪训练1 (2023·潍坊模拟)设函数f(x)=x-aln x-2.
(1)求f(x)的单调区间;
(2)若a=1,f′(x)为f(x)的导函数,当x>1时,ln x+1>(1+k)f′(x),求整数k的最大值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型二 极值点偏移
例2 已知函数f(x)=xe-x.
(1)求函数f(x)的单调区间和极值;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)若x1≠x2且f(x1)=f(x2),求证:x1+x2>2.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 极值点偏移问题的解法
(1)(对称化构造法)构造辅助函数:对结论x1+x2>(<)2x0型,构造函数F(x)=f(x)-f(2x0-x);对结论x1x2>(<)x型,构造函数F(x)=f(x)-f ,通过研究F(x)的单调性获得不等式.
(2)(比值代换法)通过代数变形将所证的双变量不等式通过代换t=化为单变量的函数不等式,利用函数单调性证明.
跟踪训练2 已知函数f(x)=ln x-ax+b(a,b∈R)有两个不同的零点x1,x2.
(1)求f(x)的最值;
(2)证明:x1x2<.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2024年高考数学第一轮复习专题训练81练第三章 §3.8 隐零点与极值点偏移问题[培优课]: 这是一份2024年高考数学第一轮复习专题训练81练第三章 §3.8 隐零点与极值点偏移问题[培优课],共1页。试卷主要包含了设f=xex-mx2,m∈R.等内容,欢迎下载使用。
2024年数学高考大一轮复习第三章 培优课 §3.8 隐零点与极值点偏移问题: 这是一份2024年数学高考大一轮复习第三章 培优课 §3.8 隐零点与极值点偏移问题,共1页。试卷主要包含了设f=xex-mx2,m∈R.等内容,欢迎下载使用。
高考数学第一轮复习第三章 §3.8 隐零点与极值点偏移问题: 这是一份高考数学第一轮复习第三章 §3.8 隐零点与极值点偏移问题,共12页。