新高考数学一轮复习讲练测课件第7章§7.9空间动态问题突破[培优课] (含解析)
展开空间动态问题,是高考常考题型,常以客观题出现.常见题型有空间位置关系判定、轨迹问题、最值问题、范围问题等.
例1 (1)(2023·昆明模拟)已知P,Q分别是正方体ABCD-A1B1C1D1的棱BB1,CC1上的动点(不与顶点重合),则下列结论错误的是A.AB⊥PQB.平面BPQ∥平面ADD1A1C.四面体ABPQ的体积为定值D.AP∥平面CDD1C1
(2)(多选)已知等边△ABC的边长为6,M,N分别为边AB,AC的中点,将△AMN沿MN折起至△A′MN,在四棱锥A′-MNCB中,下列说法正确的是A.直线MN∥平面A′BCB.当四棱锥A′-MNCB体积最大时,平面A′MN⊥平面MNCBC.在折起过程中存在某个位置使BN⊥平面A′NCD.当四棱锥A′-MNCB体积最大时,它的各顶点都在球O的球面上,则 球O的表面积为
解决空间位置关系的动点问题(1)应用“位置关系定理”转化.(2)建立“坐标系”计算.
跟踪训练1 (2022·杭州质检)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列结论一定成立的是A.三棱锥A-A1PD的体积大小与点P的位置有关B.A1P与平面ACD1相交C.平面PDB1⊥平面A1BC1D.AP⊥D1C
对于选项A, .在正方体中,BC1∥平面AA1D,所以点P到平面AA1D的距离不变,即三棱锥P-AA1D的高不变,又△AA1D的面积不变,因此三棱锥P-AA1D的体积不变,即三棱锥A-A1PD的体积与点P的位置无关,故A不成立;对于选项B,由于BC1∥AD1,AD1⊂平面ACD1,BC1⊄平面ACD1,
所以BC1∥平面ACD1,同理可证BA1∥平面ACD1,又BA1∩BC1=B,所以平面BA1C1∥平面ACD1,因为A1P⊂平面BA1C1,所以A1P∥平面ACD1,故B不成立;对于选项C,因为A1C1⊥BD,A1C1⊥BB1,BD∩BB1=B,所以A1C1⊥平面BB1D,则A1C1⊥B1D;同理A1B⊥B1D,又A1C1∩A1B=A1,所以B1D⊥平面A1BC1,
又B1D⊂平面PDB1,所以平面PDB1⊥平面A1BC1,故C成立;
例2 (1)(2023·韶关模拟)设正方体ABCD-A1B1C1D1的棱长为1,P为底面正方形ABCD内的一动点,若△APC1的面积S= ,则动点P的轨迹是A.圆的一部分 B.双曲线的一部分C.抛物线的一部分 D.椭圆的一部分
(2)如图所示,正方体ABCD-A1B1C1D1的棱长为2,E,F分别为AA1,AB的中点,M点是正方形ABB1A1内的动点,若C1M∥平面CD1EF,则M点的轨迹长度为______.
如图所示,取A1B1的中点H,B1B的中点G,连接GH,C1H,C1G,EG,HF,可得四边形EGC1D1是平行四边形,所以C1G∥D1E,又C1G⊄平面CD1EF,D1E⊂平面CD1EF,所以C1G∥平面CD1EF.同理可得C1H∥CF,C1H∥平面CD1EF.因为C1H∩C1G=C1,所以平面C1GH∥平面CD1EF.
解决与几何体有关的动点轨迹问题的方法(1)几何法:根据平面的性质进行判定.(2)定义法:转化为平面轨迹问题,用圆锥曲线的定义判定,或用代替法进行计算.(3)特殊值法:根据空间图形线段长度关系取特殊值或位置进行排除.
A.圆 B.椭圆C.双曲线的一部分 D.抛物线的一部分
建立如图所示的空间直角坐标系,设OB=OA=1,则B(0,1,0),A(0,0,1),P(x,y,0),
所以点P的轨迹是椭圆.
如图,当r=1时,点P在正方体表面上的轨迹分别是以A为圆心,1为半径的三个面上的三段弧,分别为 , , ,
在平面B1BCC1上为以B为圆心,1为半径的 ,在平面DCC1D1上为以D为圆心,1为半径的 ,
例3 (1)如图所示,菱形ABCD的边长为2,现将△ACD沿对角线AC折起,使平面ACD′⊥平面ACB,则此时空间四面体ABCD′体积的最大值为
(2)在三棱锥P-ABC中,PA,AB,AC两两垂直,D为棱PC上一动点,PA=AC=2,AB=3.当BD与平面PAC所成角最大时,AD与平面PBC所成角的正弦值为________.
以A为坐标原点,AB,AC,AP所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则A(0,0,0),B(3,0,0),C(0,2,0),P(0,0,2),D(0,1,1),
设平面PBC的法向量为n=(x,y,z),
在动态变化过程中产生的体积最大、距离最大(小)、角的范围等问题,常用的思路是(1)直观判断:在变化过程中判断点、线、面在何位置时,所求的量有相应最大、最小值,即可求解.(2)函数思想:通过建系或引入变量,把这类动态问题转化为目标函数,从而利用代数方法求目标函数的最值.
跟踪训练3 (1)在四面体ABCD中,若AD=DB=AC=CB=1,则四面体ABCD体积的最大值是
(2)如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为B1C1,C1D1的中点,P是底面A1B1C1D1上一点.若AP∥平面BEF,则AP长度的最小值是______,最大值是_____.
1.如图,在正方体ABCD-A1B1C1D1中,点M是平面A1B1C1D1内一点,且BM∥平面ACD1,则tan∠DMD1的最大值为
因为当M在直线A1C1上时,都满足BM∥平面ACD1,
2.(多选)如图,在长方体ABCD-A1B1C1D1中,点E,F分别是棱DD1,BB1上的动点(异于所在棱的端点).则下列结论正确的是A.在点F运动的过程中,直线FC1可能与AE平行B.直线AC1与EF必然异面C.设直线AE,AF分别与平面A1B1C1D1相交于点 P,Q,则点C1可能在直线PQ上D.设直线AE,AF分别与平面A1B1C1D1相交于点P,Q,则点C1一定不在 直线PQ上
∴截面圆的半径为2,∴点P的轨迹的长度为2π×2=4π.
4.(多选)如图,在等腰Rt△ABC中,BC=2,∠C=90°,D,E分别是线段AB,AC上异于端点的动点,且DE∥BC,现将△ADE沿直线DE折起至△A′DE,使平面A′DE⊥平面BCED,当D从B滑动到A的过程中,下列选项中正确的是A.∠A′DB的大小不会发生变化B.二面角A′-BD-C的平面角 的大小不会发生变化C.三棱锥A′-EBC的体积先变小再变大D.A′B与DE所成的角先变大后变小
由三垂线法作出二面角A′-BD-C的平面角,可知其大小为定值,故B正确;
由二次函数的单调性,可知V先变大后变小,故C错误;A′B与DE所成的角先变小后变大,故D错误.
5.在空间直角坐标系Oxyz中,正四面体P-ABC的顶点A,B分别在x轴、y轴上移动.若该正四面体的棱长是2,则|OP|的取值范围是
如图所示,若固定正四面体P-ABC的位置,则原点O在以AB为直径的球面上运动.
6.已知正四面体D-ABC,点E,F分别为棱CD,AC的中点,点M为线段EF上的动点,设EM=x,则下列说法正确的是A.直线DA与直线MB所成的角随x的增大而增大B.直线DA与直线MB所成的角随x的增大而减小C.直线DM与平面ABD所成的角随x的增大而增大D.直线DM与平面ABD所成的角随x的增大而减小
B.若MN=4,则MN的中点P的轨迹所围成图形的面积为2πC.若点N到直线BB1与到直线DC的距离相等,则点N的轨迹为抛物线
7.(多选)如图,已知正方体ABCD-A1B1C1D1的棱长为4,M为DD1的中点,N为ABCD所在平面内一动点,则下列命题正确的是
对于C,连接NB,因为BB1⊥平面ABCD,所以BB1⊥NB,所以点N到直线BB1的距离为NB,因为点N到点B的距离等于点N到定直线CD的距离,又B不在直线CD上,所以点N的轨迹为以B为焦点,CD为准线的抛物线,故C正确;
对于D,以D为坐标原点,DA,DC,DD1所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(4,0,0),B(4,4,0),D1(0,0,4),设N(x,y,0),
10.如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,点D是AB上的动点.下列结论正确的是________.(填序号)①AC⊥BC1;②存在点D,使得AC1∥平面CDB1;③不存在点D,使得平面CDB1⊥平面AA1B1B;④三棱锥A1-CDB1的体积是定值.
新高考数学一轮复习讲练测课件第7章§7.2球的切、接问题[培优课] (含解析): 这是一份新高考数学一轮复习讲练测课件第7章§7.2球的切、接问题[培优课] (含解析),共60页。PPT课件主要包含了题型一,定义法,思维升华,题型二,补形法,题型三,截面法,课时精练,第三部分,设正方体的棱长为a等内容,欢迎下载使用。
新高考数学一轮复习讲练测课件第6章§6.7子数列问题[培优课] (含解析): 这是一份新高考数学一轮复习讲练测课件第6章§6.7子数列问题[培优课] (含解析),共60页。PPT课件主要包含了题型一,奇数项与偶数项,思维升华,题型二,两数列的公共项,题型三,分段数列,课时精练,基础保分练,综合提升练等内容,欢迎下载使用。
新高考数学一轮复习讲练测课件第6章§6.4数列中的构造问题[培优课] (含解析): 这是一份新高考数学一轮复习讲练测课件第6章§6.4数列中的构造问题[培优课] (含解析),共60页。PPT课件主要包含了题型一,思维升华,n+1-n-1,题型二,n-1,题型三,倒数为特殊数列,课时精练,故选项AB错误,故选项D正确等内容,欢迎下载使用。