2015年辽宁省沈阳市中考数学试卷与答案
展开2015年辽宁省沈阳市中考数学试卷
一.选择题(每小题3分,共24分)
1.比0大的数是( )
A.﹣2 B.﹣ C.﹣0.5 D.1
2.如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是( )
A. B. C. D.
3.下列事件为必然事件的是( )
A.经过有交通信号灯的路口,遇到红灯 B.明天一定会下雨
C.抛出的篮球会下落 D.任意买一张电影票,座位号是2的倍数
4.如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是( )
A.100° B.90° C.80° D.70°
5.下列计算结果正确的是( )
A.a4•a2=a8 B.(a5)2=a7 C.(a﹣b)2=a2﹣b2 D.(ab)2=a2b2
6.一组数据2、3、4、4、5、5、5的中位数和众数分别是( )
A.3.5,5 B.4,4 C.4,5 D.4.5,4
7.顺次连接对角线相等的四边形的各边中点,所形成的四边形是( )
A.平行四边形 B.菱形 C.矩形 D.正方形
8.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是( )
A. B. C. D.
二.填空题(每小题4分,共32分)
9.分解因式:ma2﹣mb2= .
10.不等式组的解集是 .
11.如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm为半径作⊙A,当AB= cm时,BC与⊙A相切.
12.某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65.84,乙跳远成绩的方差为S乙2=285.21,则成绩比较稳定的是 .(填“甲”或“乙”)
13.在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有 个.
14.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE= .
15.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 s能把小水杯注满.
16.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= .
三.解答题
17.(8分)计算:+|﹣2|﹣()﹣2+(tan60°﹣1)0.
18.(8分)如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:
(1)△EAB≌△EDC;(2)∠EFG=∠EGF.
19.(10分)我国是世界上严重缺水的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量分布情况扇形统计图和2004﹣2008年全国生活用水量折线统计图的一部分如下(A指农业用水量;B指工业用水量;C指生活用水量):
(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量为 亿m3,2008年全国生活用水量比2004年增加了20%,则2008年全国生活用水量为 亿m3;
(2)根据以上信息,请直接在答题卡上补全折线统计图;
(3)根据以上信息2008年全国总水量为 亿;
(4)我国2008年水资源总量约为2.75×104亿m3,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008年我国是否属于可能发生“水危机”的行列?并说明理由.
20.(10分)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.
21.(10分)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.
(1)求∠OCA的度数;
(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)
22.(10分)如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.
(1)填空:n的值为 ,k的值为 ;
(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;
(3)观察反比例函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.
23.(12分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.
(1)求点A和点C的坐标;
(2)当0<t<30时,求m关于t的函数关系式;
(3)当m=35时,请直接写出t的值;
(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.
24.(12分)如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.
(1)当点H与点C重合时.
①填空:点E到CD的距离是 ;
②求证:△BCE≌△GCF;
③求△CEF的面积;
(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF的面积.
25.(14分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.
(1)填空:点A的坐标为( , ),点B的坐标为( , ),点C的坐标为( , ),点D的坐标为( , );
(2)点P是线段BC上的动点(点P不与点B、C重合)
①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;
②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;
③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.
2015年辽宁省沈阳市中考数学试卷答案
1. D.2. A.3. C.4. C5. D.6. C.7.B8.D.
9. m(a+b)(a﹣b).10.﹣2≤x<311. 6.12.甲.13. 4.14. 2:3.15. 5.16. 2﹣3.
17.解:原式=3+﹣2﹣9+1
=﹣7.
18.证明:(1)∵四边形ABCD是矩形,
∴AB=DC,∠BAD=∠CDA=90°.
∵EA=ED,
∴∠EAD=∠EDA,
∴∠EAB=∠EDC.
在△EAB与△EDC中,
,
∴△EAB≌△EDC(SAS);
(2)∵△EAB≌△EDC,
∴∠AEF=∠DEG,
∵∠EFG=∠EAF+∠AEF,∠EGF=∠EDG+∠DEG,
∴∠EFG=∠EGF.
19.解:(1)设2004年全国生活用水量为x亿m3,
根据题意得x•(1+16%)=725,解得x=625,
即2004年全国生活用水量为625亿m3,
则2008年全国生活用水量=625×(1+20%)=750(亿m3);
(2)如图:
(3)2008年全国总水量=750÷15%=5000(亿);
(4)不属于.理由如下:
2.75×104×20%=5500>5000,
所以2008年我国不属于可能发生“水危机”的行列.
故答案为625,750,5000.
20.解:设高速铁路列车的平均速度为xkm/h,
根据题意,得:,
去分母,得:690×3=690+4.6x,
解这个方程,得:x=300,
经检验,x=300是所列方程的解,
因此高速铁路列车的平均速度为300km/h.
21.解:(1)∵四边形ABCD是⊙O的内接四边形,
∴∠ABC+∠D=180°,
∵∠ABC=2∠D,
∴∠D+2∠D=180°,
∴∠D=60°,
∴∠AOC=2∠D=120°,
∵OA=OC,
∴∠OAC=∠OCA=30°;
(2)∵∠COB=3∠AOB,
∴∠AOC=∠AOB+3∠AOB=120°,
∴∠AOB=30°,
∴∠COB=∠AOC﹣∠AOB=90°,
在Rt△OCE中,OC=2,
∴OE=OC•tan∠OCE=2•tan30°=2×=2,
∴S△OEC=OE•OC=×2×2=2,
∴S扇形OBC==3π,
∴S阴影=S扇形OBC﹣S△OEC=3π﹣2.
22.解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;
把点A(4,3)代入反比例函数y=,可得3=,
解得k=12.
(2)∵一次函数y=x﹣3与x轴相交于点B,
∴x﹣3=0,
解得x=2,
∴点B的坐标为(2,0),
如图,过点A作AE⊥x轴,垂足为E,
过点D作DF⊥x轴,垂足为F,
∵A(4,3),B(2,0),
∴OE=4,AE=3,OB=2,
∴BE=OE﹣OB=4﹣2=2,
在Rt△ABE中,
AB===,
∵四边形ABCD是菱形,
∴AB=CD=BC=,AB∥CD,
∴∠ABE=∠DCF,
∵AE⊥x轴,DF⊥x轴,
∴∠AEB=∠DFC=90°,
在△ABE与△DCF中,
,
∴△ABE≌△DCF(ASA),
∴CF=BE=2,DF=AE=3,
∴OF=OB+BC+CF=2++2=4+,
∴点D的坐标为(4+,3).
(3)当y=﹣2时,﹣2=,解得x=﹣6.
故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.
故答案为:3,12.
23.解:(1)如图1,过点A作AD⊥OB,垂足为D,过点C作CE⊥OB,垂足为E,
∵OA=AB,
∴OD=DB=OB,
∵∠OAB=90°,
∴AD=OB,
∵点B的坐标为:(60,0),
∴OB=60,
∴OD=OB=×60=30,
∴点A的坐标为:(30,30),
∵直线l平行于y轴且当t=40时,直线l恰好过点C,
∴OE=40,
在Rt△OCE中,OC=50,
由勾股定理得:
CE===30,
∴点C的坐标为:(40,﹣30);
(2)如图2,∵∠OAB=90°,OA=AB,
∴∠AOB=45°,
∵直线l平行于y轴,
∴∠OPQ=90°,
∴∠OQP=45°,
∴OP=QP,
∵点P的横坐标为t,
∴OP=QP=t,
在Rt△OCE中,
OE=40,CE=30,
∴tan∠EOC=,
∴tan∠POR==,
∴PR=OP•tan∠POR=t,
∴QR=QP+PR=t+t=t,
∴当0<t<30时,m关于t的函数关系式为:m=t;
(3)由(2)得:当0<t<30时,m=35=t,解得:t=20;
如图3,当30≤t≤40时,m=35显然不可能;
当40<t<60时,∵OP=t,则BP=QP=60﹣t,
∵PR∥CE,
∴△BPR∽△BEC,
∴=,
∴=,
解得:PR=90﹣t,
则m=60﹣t+90﹣t=35,
解得:t=46,
综上所述:t的值为20或46;
(4)如图4,由题意可得:PB=60﹣t,
∵∠PMB+∠POC=90°,
∠PMB+∠PBM=90°,
∴∠POC=∠PBM,
∴tan∠PBM=,
∴PM=(60﹣t),BM=(60﹣t),
∵△PMB的周长为60,
∴PB+PM+BM=60,
即60﹣t+(60﹣t)+(60﹣t)=60,
解得:t=40,
即当∠PMB+∠POC=90°且△PMB的周长为60时,此时t=40,直线l恰好经过点C,
则∠MBP=∠COP,
故此时△BMP∽△OCP,
则=,
即=,
解得:x=15,
故M1(40,15),
同理可得:M2(40,﹣15),
综上所述:符合题意的点的坐标为:M1(40,15),M2(40,﹣15).
24.解:(1)如图1,①作CK⊥AB于K,
∵∠B=60°,
∴CK=BC•sin60°=4×=2,
∵C到AB的距离和E到CD的距离都是平行线AB、CD间的距离,
∴点E到CD的距离是2,
故答案为2;
②∵四边形ABCD是平行四边形,
∴AD=BC,∠D=∠B,∠A=∠BCD,
由折叠可知,AD=CG,∠D=∠G,∠A=∠ECG,
∴BC=GC,∠B=∠G,∠BCD=∠ECG,
∴∠BCE=∠GCF,
在△BCE和△GCF中,
,
∴△BCE≌△GCF(ASA);
③过E点作EP⊥BC于P,
∵∠B=60°,∠EPB=90°,
∴∠BEP=30°,
∴BE=2BP,
设BP=m,则BE=2m,
∴EP=BE•sin60°=2m×=m,
由折叠可知,AE=CE,
∵AB=6,
∴AE=CE=6﹣2m,
∵BC=4,
∴PC=4﹣m,
在RT△ECP中,由勾股定理得(4﹣m)2+(m)2=(6﹣2m)2,解得m=,
∴EC=6﹣2m=6﹣2×=,
∵△BCE≌△GCF,
∴CF=EC=,
∴S△CEF=××2=;
(2)①当H在BC的延长线上,且位于C点的右侧时,如图2,过E点作EQ⊥BC于Q,
∵∠B=60°,∠EQB=90°,
∴∠BEQ=30°,
∴BE=2BQ,
设BQ=n,则BE=2n,
∴QE=BE•sin60°=2n×=n,
由折叠可知,AE=HE,
∵AB=6,
∴AE=HE=6﹣2n,
∵BC=4,CH=1,
∴BH=5,
∴QH=5﹣n,
在Rt△EHQ中,由勾股定理得(5﹣n)2+(n)2=(6﹣2n)2,解得n=,
∴AE=HE=6﹣2n=,
∵AB∥CD,
∴△CMH∽△BEH,
∴=,即=,
∴MH=,
∴EM=﹣=,
由折叠知∠AEF=∠MEF,又由平行知∠AEF=∠EFM,
∴EM=FM=,
∴S△EMF=××2=.
②如图3,当H在线段BC上时,过E点作EQ⊥BC于Q,
∵∠B=60°,∠EQB=90°,
∴∠BEQ=30°,
∴BE=2BQ,
设BQ=n,则BE=2n,
∴QE=BE•sin60°=2n×=n,
由折叠可知,AE=HE,
∵AB=6,
∴AE=HE=6﹣2n,
∵BC=4,CH=1,
∴BH=3
∴QH=3﹣n
在Rt△EHQ中,由勾股定理得(3﹣n)2+(n)2=(6﹣2n)2,解得n=
∴BE=2n=3,AE=HE=6﹣2n=3,
∴BE=BH,
∴∠B=60°,
∴△BHE是等边三角形,
∴∠BEH=60°,
∵∠AEF=∠HEF,
∴∠FEH=∠AEF=60°,
∴EF∥BC,
∴DF=CF=3,
∵AB∥CD,
∴△CMH∽△BEH,
∴=,即=,
∴CM=1
∴EM=CF+CM=4
∴S△EMF=×4×2=4.
综上,△MEF的面积为或4.
25.解:(1)令x=0,则y=2,
∴A(0,2),
令y=0,则﹣x2﹣x+2=0,解得x1=﹣3,x2=1(舍去),
∴B(﹣3,0),C(1,0),
由y=﹣x2﹣x+2=﹣(x+1)2+可知D(﹣1,),
故答案为:0、2,﹣3、0,1、0,﹣1、;
(2)①设P(n,0),则E(n,﹣n2﹣n+2),
∵PE=PC,
∴﹣n2﹣n+2=1﹣n,解得n1=﹣,n2=1(舍去),
∴当n=﹣时,1﹣n=,
∴E(﹣,),
②如图1,设直线DE与x轴交于M,与y轴交于N,直线EA与x轴交于K,
根据E、D的坐标求得直线ED的斜率为,根据E、A的坐标求得直线EA的斜率为﹣,
∴△MEK是以MK为底边的等腰三角形,△AEN是以AN为底边的等腰三角形,
∵到EA和ED的距离相等的点F在顶角的平分线上,
根据等腰三角形的性质可知,EF是E点到坐标轴的距离,
∴EF=或;
(3)根据题意得:当△PQR为△ABC垂足三角形时,周长最小,所以P与O重合时,周长最小,
如图2,作O关于AB的对称点E,作O关于AC的对称点F,连接EF交AB于Q,交AC于R,
此时△PQR的周长PQ+QR+PR=EF,
∵A(0,2),B(﹣3,0),C(1,0),
∴AB==,AC==,
∵S△AOB=×OE×AB=OA•OB,
∴OE=,
∵△OEM∽△ABO,
∴==,即==,
∴OM=,EM=
∴E(﹣,),
同理求得F(,),
即△PQR周长的最小值为EF==.
2018年辽宁省沈阳市中考数学试卷与答案: 这是一份2018年辽宁省沈阳市中考数学试卷与答案,共9页。试卷主要包含了选择题,细心填一填,解答题题,解答题等内容,欢迎下载使用。
2017年辽宁省沈阳市中考数学试卷与答案: 这是一份2017年辽宁省沈阳市中考数学试卷与答案,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2016年辽宁省沈阳市中考数学试卷与答案: 这是一份2016年辽宁省沈阳市中考数学试卷与答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。