|试卷下载
搜索
    上传资料 赚现金
    2022-2023学年江苏省泰州市兴化市高一下学期期中数学(理)试题含答案
    立即下载
    加入资料篮
    2022-2023学年江苏省泰州市兴化市高一下学期期中数学(理)试题含答案01
    2022-2023学年江苏省泰州市兴化市高一下学期期中数学(理)试题含答案02
    2022-2023学年江苏省泰州市兴化市高一下学期期中数学(理)试题含答案03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年江苏省泰州市兴化市高一下学期期中数学(理)试题含答案

    展开
    这是一份2022-2023学年江苏省泰州市兴化市高一下学期期中数学(理)试题含答案,共16页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    2022-2023学年江苏省泰州市兴化市高一下学期期中数学(理)试题

     

    一、单选题

    1    

    A B C D

    【答案】A

    【分析】利用诱导公式和两角差的正弦公式求解.

    【详解】.

    故选:A

    2.已知复数为纯虚数(其中i是虚数单位),则实数b的值为(    

    A-3 B-1 C1 D3

    【答案】C

    【分析】直接由复数代数形式的乘法运算化简复数z,又复数z为纯虚数,则实部为0,虚部不等于0,即可求出实数b的值.

    【详解】复数

    又复数z为纯虚数,则有,解得.

    故选:C.

    3.若平面上的三个力作用于一点,且处于平衡状态.已知的夹角为120°,则的大小为(    

    A B C2N D3N

    【答案】B

    【分析】由三力平衡,知,将其两边平方,并结合平面向量的数量积进行运算,得解.

    【详解】由题意知,

    所以

    所以

    故选:B

    4.《周髀算经》中侧影探日行一文有记载:即取竹空,径一寸,长八尺,捕影而视之,空正掩目,而日应空之孔.”意谓:取竹空这一望筒,当望筒直径d是一寸,筒长l是八尺时(注:一尺等于十寸),从筒中搜捕太阳的边缘观察,则筒的内孔正好覆盖太阳,而太阳的外缘恰好填满竹管的内孔.”如图所示,O为竹空底面圆心,则太阳角AOB的正切值为(    

    A B C D

    【答案】A

    【分析】根据题意,结合正切的二倍角公式进行求解即可.

    【详解】由题意可知:

    所以.

    故选:A.

    5.若的面积为,则    

    A B1 C D2

    【答案】C

    【分析】由条件结合三角形面积公式求,再由余弦定理求.

    【详解】由三角形面积公式可得的面积

    所以

    由余弦定理可得

    所以

    所以

    故选:C.

    6.在平行四边形ABCD中,,则    

    A B3 C4 D6

    【答案】D

    【分析】利用平面向量基本定理得到,利用向量数量积公式求出.

    【详解】因为,所以中点,

    由题意得

    所以

    ,则,代入上式中得,

    解得.

    故选:D

    7.已知,则=    

    A B C D

    【答案】B

    【分析】用诱导公式化简已知式和求值式,求值式变形有后用二倍角公式计算.

    【详解】由题意

    所以

    所以

    故选:B

    【点睛】本题考查诱导公式与二倍角公式求值.解题关键是对单角复角的相对性的理解与应用.本题中用诱导公式化简和用二倍角公式求值,都是把作为一个单角进行变形参与运算,而不是作为两个角的和.

    80.618被公认为是最具有审美意义的比例数字,是最能引起美感的比例,因此被称为黄金分割.被誉为中国现代数学之父的著名数学家华罗庚先生倡导的“0.618优选法在生产和科研实践中得到了非常广泛的应用.他认为底与腰之比为黄金分割比的黄金三角形是最美三角形,即顶角为36°的等腰三角形,例如,中国国旗上的五角星就是由五个最美三角形与一个正五边形组成的,如图,在其中一个黄金中,黄金分割比为.根据以上信息,计算    

    A B C D

    【答案】B

    【解析】利用正弦定理及正弦的二倍角公式求得,然后由诱导公式求解.

    【详解】中,由正弦定理可得

    .

    故选:B.

    【点睛】关键点点睛:本题考查正弦定理和正弦的二倍角公式,考查诱导公式.本题考查关键是利用正弦定理把三角函数值与黄金分割比联系起来,得

     

    二、多选题

    9.已知i为虚数单位,则下列结论正确的是(    

    A.复数的虚部为 B.复数在复平面内对应的点位于第四象限

    C.若,则 D.若复数z满足,则

    【答案】ABD

    【分析】根据复数运算求,由此确定其虚部,判断A,根据复数的几何意义确定其对应点,判断B,举反例,判断C,根据复数的运算,结合条件判断D.

    【详解】对于A,因为,故复数的虚部为A正确;

    对于B,复数在复平面内对应的点为,该点位于第四象限,B正确;

    对于C,取,则

    ,故C错误;

    对于D,设,则

    因为,所以,故D正确;

    故选:ABD.

    10.在中,内角ABC所对的边分别为abc.则下列结论正确的是(    

    A.若,则

    B,则为等腰三角形

    C.若,则为钝角三角形

    D

    【答案】ACD

    【分析】利用正弦定理角化边推理判断A;利用正弦定理边化角推理判断B;利用和角的正切推理得并判断C;利用正余弦定理、二倍角的余弦推理判断D作答.

    【详解】对于A,在中,由及正弦定理,得,所以A正确;

    对于B,由及正弦定理,得,于是

    ,得,即

    所以为等腰三角形或直角三角形,B错误;

    对于C,在中,由

    ,因此中有且只有一个为负数,

    所以中有一个为钝角,即为钝角三角形,C正确;

    对于D,在中,由余弦定理得

    由正弦定理得

    于是

    整理得D正确.

    故选:ACD

    11.下列四个等式中正确的是(    

    A B

    C D

    【答案】BCD

    【分析】对于A,利用余弦二倍角公式求解,对于B,通分后利用两角差的正弦公式化简,对于C,将化简后,代入计算即可,对于D,利用两角和的正切公式化简计算.

    【详解】对于A,所以A错误,

    对于B

    ,所以B正确,

    对于C,因为

    所以

    ,所以C正确,

    对于D,因为

    所以

    所以

    ,所以D正确,

    故选:BCD

    12.已知所在平面内一点,则下列正确的是(    

    A.若,则点的中位线上

    B.若,则的重心

    C.若,则为锐角三角形

    D.若,则的面积比为

    【答案】ABD

    【分析】中点为中点为,由可得,可知A正确;

    中点为,由,对应重心的性质可知B正确;

    为锐角,但无法确定,知C错误;

    根据平面向量基本定理可知,将面积比转化为,知D正确.

    【详解】对于A,设中点为中点为

    ,即三点共线,

    的中位线,的中位线上,A正确;

    对于B,设中点为,由得:

    在中线上,且

    的重心,B正确;

    对于C夹角为锐角,即为锐角,但此时有可能是直角或钝角,故无法说明为锐角三角形,C错误;

    对于D为线段上靠近的三等分点,即

    D正确.

    故选:ABD.

    【点睛】关键点点睛:本题考查平面向量在几何中的应用问题,涉及到三角形重心的表示、平面向量基本定理的应用等知识;本题解题关键是能够根据平面向量线性运算将已知等式进行转化,确定点的具体位置及其满足的性质.

     

    三、填空题

    13.在复平面内,对应的复数是对应的复数是,则对应的复数是     

    【答案】

    【分析】由向量的线性运算和复数的减法运算可求得答案.

    【详解】解:由题意可知,,则对应的复数是.

    故答案为:.

    14.如图,在4×4的方格纸中,若起点和终点均在格点的向量满足,则     

      

    【答案】7

    【分析】建立合适的直角坐标系,写出相关向量,根据题意得到方程组即可得到答案.

    【详解】建立如图所示直角坐标系,设小方格的边长为单位长度1

    可得,同理可得

    将方程组中两式相加,可得.

    故答案为:7.

        

    15.如图,在四边形ABCD中,AD=3BC=4EF分别是ABCD的中点,PQ分别是ACBD的中点,则     

      

    【答案】/1.75

    【分析】可连接,根据题意即可得出四边形为平行四边形,从而可得出,然后进行数量积的运算即可.

    【详解】如图,连接

        

    的中点,为对角线的中点,

    四边形为平行四边形,

    故答案为:

     

    四、双空题

    16.在中,已知.锐角满足

         

    取最小值时,     

    【答案】     /    

    【分析】由条件可知,,展开后利用三角恒等变形,

    转化为的二次函数,即可求解;第二问可知,

    ,展开后利用三角恒等变形,得到

    ,代入后,利用基本不等式求最值,即可求解.

    【详解】由题意可知,,则

    ,则,

    时,

    两边同时除以,并且

    化简为,得(舍),

    所以

    ,两边同时除以

    ,

    化简为,则

    ,则

    时,即时等号成立,

    此时

    所以.

    故答案为:

     

    五、解答题

    17.已知为锐角,

    1)求的值;

    2)求的值.

    【答案】12;(2

    【分析】1)利用同角三角函数的基本关系与正切的和差角公式求解即可;

    2)利用同角三角函数的基本关系与余弦的和差角公式求解即可

    【详解】1)因为为锐角,则

    2)由得:

    18.已知为虚数单位.

    1)计算:

    2)若,求复数.

    【答案】1;(2.

    【分析】1)根据复数的运算性质计算即可;(2)设,求出的值,求出即可.

    【详解】1.

    2)设

    则由,得

    解得

    .

    19.已知是同一平面内的三个向量,其中

    (1),且,求的坐标;

    (2),且垂直,求的夹角.

    【答案】(1).

    (2).

     

    【分析】1)设,根据两向量平行的坐标关系以及向量的模的计算建立方程组,求解即可;

    2)由向量垂直的条件以及向量夹角的计算公式可求得答案.

    【详解】1)解:设,因为,所以

    ,所以,由①②联立,解得,所以

    2)解:由,得

    ,解得,所以

    所以的夹角.

    20如图,在中,分别在边上,且满足中点.

    (1)若,求实数的值;

    (2)若,求边的长.

    【答案】(1)(2)6

    【分析】(1)先由,确定向量之间的关系,用表示出,由对应系数相等,即可求出结果;

    2)用向量表示出向量,再由向量数量积运算求解即可.

    【详解】解:(1)因为,所以

    所以,所以

    (2)因为

    所以

    ,因为

    所以,又因为

    所以

    化简得

    解得(负值舍去),所以的长为6.

    【点睛】本题主要考查向量的基本定理以及向量的数量积运算,只需熟记定理和公式即可求解,难度不大.

    21.已知abc分别为三个内角ABC的对边,

    (1),求角C

    (2)设点D满足,求

    【答案】(1)

    (2)

     

    【分析】1)由向量数量积的定义可得,结合余弦边角关系有,进而确定abc的关系,应用余弦定理求角C

    2)由(1)知是顶角为的等腰三角形,且,根据,应用向量数量积的运算律求得,即可得.

    【详解】1)由,即,故

    所以,整理得

    由余弦边角关系得,则

    所以,即,则

    ,故.

      

    2)由(1)易知:是顶角为的等腰三角形,且

    ,则

    所以,而,故.

    22.在平面凸四边形中,

    (1)当四边形内接于圆O时,求四边形的面积

    (2)当四边形的面积最大时,求对角线的长.

    【答案】(1)

    (2).

     

    【分析】1)利用余弦定理,结合求出角,再利用三角形面积公式求解作答.

    2)结合余弦定理和面积公式得,进而得,再由三角函数性质得当时,有最大值,再借助余弦定理求解作答.

    【详解】1)连接,如图,

      

    由余弦定理得:

    于是,又四边形内接于圆,即

    因此,化简可得,又,解得

    于是

    所以四边形的面积.

    2)设四边形的面积为,则

    于是,即

    平方相加得,即,又

    则当时,有最大值,即有最大值,此时解得

    ,于是

    中,,即

    所以对角线的长为.

    【点睛】思路点睛:涉及平面多边形问题,把图形拆分成若干个三角形,再在各个三角形内利用正弦、余弦定理求解.

     

    相关试卷

    2022-2023学年江苏省泰州市兴化市高一下学期期中理科数学试题: 这是一份2022-2023学年江苏省泰州市兴化市高一下学期期中理科数学试题,文件包含江苏省泰州市兴化市高一下学期期中理科数学试题原卷版docx、江苏省泰州市兴化市高一下学期期中理科数学试题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    2022-2023学年江苏省泰州市田家炳实验中学高一下学期期中数学试题: 这是一份2022-2023学年江苏省泰州市田家炳实验中学高一下学期期中数学试题,文件包含江苏省泰州市田家炳实验中学高一下学期期中数学试题原卷版docx、江苏省泰州市田家炳实验中学高一下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    2022-2023学年江苏省泰州市田家炳实验中学高一下学期期中数学试题含答案: 这是一份2022-2023学年江苏省泰州市田家炳实验中学高一下学期期中数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022-2023学年江苏省泰州市兴化市高一下学期期中数学(理)试题含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map