|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022-2023学年重庆市高二下学期期末数学试题含答案
    立即下载
    加入资料篮
    2022-2023学年重庆市高二下学期期末数学试题含答案01
    2022-2023学年重庆市高二下学期期末数学试题含答案02
    2022-2023学年重庆市高二下学期期末数学试题含答案03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年重庆市高二下学期期末数学试题含答案

    展开
    这是一份2022-2023学年重庆市高二下学期期末数学试题含答案,共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年重庆市高二下学期期末数学试题

     

    一、单选题

    1.已知随机变量,若,则    

    A B C D

    【答案】B

    【分析】根据二项分布的期望计算公式以及的关系式即可求得结果.

    【详解】随机变量

    ,解得:.

    故选:B.

    2.下列两个变量中,成正相关的两个变量是(    

    A.汽车自身的重量与行驶每公里的耗油量

    B.每个人体育锻炼的时间与身体的重量

    C.花费在体育活动上面的时间与期末考试数学成绩

    D.期末考试随机编排的准考证号与期末考试成绩总分

    【答案】A

    【分析】利用正相关的定义逐项判断可得答案.

    【详解】对于A,一般情况下,汽车越重,则每公里耗油量越多,成正相关,故A正确;

    对于B,一般情况下,锻炼时间越长,体重越轻,成负相关,故B错误;

    对于C,一般情况下,花费在体育活动上面的时间越长,则期末考试数学成绩可能会降低,故为负相关,故C错误;

    对于D,期末考试随机编排的准考证号与期末考试成绩总分没有相关关系,故D错误.

    故选:A.

    3是函数的导函数,的图象如图所示,则下列说法不正确的是(    

      

    A函数有三个零点

    B函数有两个极小值点

    C函数有一个极大值点

    D函数有两个单调递减区间

    【答案】A

    【分析】由导函数为负,原函数单调递减;导函数为正,原函数单调递增.与极值点的定义即可选出答案.

    【详解】记函数轴的三个交点横坐标从左往右依次为

    则由图可知:当时,上单调递减;

    时,上单调递增;

    时,上单调递减;

    时,上单调递增;

    故函数有两个极小值点:;有一个极大值点:;即BCD选项正确,

    不能确定函数的零点个数,A错误.

    故选:A

    4.对于线性回归直线,样本点的残差为(    

    A B C D

    【答案】A

    【分析】根据残差的定义可求得结果.

    【详解】对于线性回归方程,当时,,故残差为.

    故选:A.

    5.若函数的满足,则    

    A2 B1 C0 D

    【答案】D

    【分析】由极限的定义化简即可求出答案.

    【详解】因为

    所以

    故选:D

    6在星期一,某校高二所有班级的三节晩自习都是排的数学物理化学生物,按规定每班每节晩自习只安排一门学科,且每科在每班至多安排一节晩自习,若高二所有班级的晩自习安排都不同,则该校高二班级个数最多为(    

    A12 B18 C24 D30

    【答案】C

    【分析】将问题等价于从数学物理化学生物4门学科中任选3门的全排列种数.

    【详解】由题意,问题可等价于从数学物理化学生物4门学科中任选3门的全排列种数,

    .

    故选:C

    7生物的性状是由遗传因子决定的.每个因子决定着一种特定的性状,其中决定显性性状的为高茎遗传因子,用大写字母(如)来表示;决定隐性性状的为矮茎遗传因子,用小写字母(如)来表示.如图,在孟德尔豌豆试验中,的基因型为,子二代的基因型为,且这三种基因型的比为.如果在子二代中任意选取2颗踠豆进行杂交试验,则子三代中高茎的概率为(    

      

    A B C D

    【答案】C

    【分析】利用列举法,列举出所有的可能结果,再利用全概率公式求解即可.

    【详解】子二代基因配型有6种情况,分别记为事件,

     子三代基因型为高茎记为事件,则

    事件

    配型

    ,

    故选:C

    8.设是函数的导函数,当时,,则(    

    A B

    C D

    【答案】B

    【分析】利用三角函数公式化简已知,再构造函数,利用函数单调性依次判断选项.

    【详解】

    单调递增,

    ,所以A错误;

    所以,所以B正确;

    ,所以C错误;

    ,所以D错误.

    故选:B

     

    二、多选题

    9.设为正整数,若,则    

    A2 B3 C4 D5

    【答案】AB

    【分析】由组合数的性质计算即可得出答案.

    【详解】因为,

    所以,

    解得.

    故选:AB

    10.对于变量和变量,已知由20个样本点组成的样本中心为的一个样本,其线性回归方程是,若去除前两个已知样本点后得到新的线性回归方程是,则对于新的样本数据(    

    A.新的样本中心为

    B.相关变量具有正相关的关系

    C.新的线性回归方程与线性回归方程是相同的

    D.随着变量的增加,变量的增加速度增大

    【答案】AB

    【分析】由原样本中心点为,即可求出新样本中心点;由线性回归方程过样本中心点即可求出,由此即可判断B选项;由线性回归方程中的计算公式即可判断C选项;由直线的性质可判断D选项.

    【详解】由题意知解得:

    解得:

    所以新的样本中心为,故A正确;

    过点,即,解得,即相关变量具有正相关的关系,故B正确;

    ,可得:,化简得:

    可知新的线性回归方程与线性回归方程中的不相等,故C错误;

    由线性回归方程为直线方程可知随着变量的增加,变量的增加速度不变,故D错误.

    故选:AB

    11.已知函数的导函数是,则下列结论正确的有(    

    A必有一个极大值

    B的单调递减区间为

    C.方程有三个实数解

    D的单调递减区间为

    【答案】AD

    【分析】分析函数的单调性,作出函数的图象,结合极值点的定义可判断A选项;利用复合函数的单调性可判断BD选项;取,结合函数的单调性可判断C选项.

    【详解】对于A选项,因为,设

    可得,由可得

    所以,函数的减区间为,增区间为

    所以,函数的极大值为,极小值为

    时,即当时,

    函数上的零点记为

      

    时,,则函数上单调递增,在上单调递减,

    此时函数的一个极大值为

    时,即当时,

      

    函数有三个零点,分别设为,且

    由图可知,函数有两个极大值点

    时,即当时,作出函数的图象如下图所示:

      

    则函数上有个零点

    由图可知,函数上单调递增,在单调递减,

    所以,的极大值为.

    综上所述,必有一个极大值,A对;

    对于B选项,令,该函数的定义域为

    因为函数上的减区间为,增区间为

    由偶函数的性质可知,函数的单调递减区间为B错;

    对于C选项,令,则

    函数的极大值为,极小值为

    时,即当时,

    因为函数上单调递减,在上单调递增,

    故当时,

    此时,方程上无实根,

    又因为函数上单调递增,故方程上最多一个根,

    此时,方程不可能有三个根,C错;

    对于D选项,函数的单调递减区间为

    可得,所以,函数的减区间为D.

    故选:AD.

    【点睛】方法点睛:利用导数解决函数零点问题的方法:

    1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;

    2)构造新函数法:将问题转化为研究两函数图象的交点问题;

    3)参变量分离法:由分离变量得出,将问题等价转化为直线与函数的图象的交点问题.

    12杨辉三角形又称贾宪三角形,因首现于南宋杰出数学家杨辉的《详解九章算法》而得名,它的排列规律如图所示:在第一行的中间写下数字1;在第二行写下两个1,和第一行的1形成三角形;随后的每一行,第一个位置和最后一个位置的数都是1,其他的每个位置的数都是它左上方和右上方的数之和.那么下列说法中正确的是(    

      

    A行的第个位置的数是

    B若从杨辉三角形的第三行起,每行第3个位置的数依次组织一个新的数列,则数列是两项奇数和两项偶数交替呈现的数列

    C70在杨辉三角中共出现了3

    D210在杨辉三角中共出现了6

    【答案】BCD

    【分析】即可验证A错误;易知数列的递推公式为,由此即可判断B正确;由可判断C选项;由可判断D选项.

    【详解】对于A选项:第行的第个位置的数是,故A错误;

    对于B选项:由题

    数列的奇数项与前一项奇偶性相反,偶数项与前一项奇偶性相同,

    为奇数,

    为奇数,为偶数,为偶数,为奇数,是奇数项且为奇数,这与情况一致,从而奇偶性产生循环,B正确;

    由于,不妨设,令

    时,

    时,,无正整数解,

    时,,当,当时,,而递增,从而无解;

    时,,当

    由于是第9行中最中间的数,杨辉三角中以该数为顶点的下方三角形区域中的数都大于70

    所以当时,共出现3次,C正确;

    类似于前

    为顶点的下方三角形区域中的数都大于,D正确.

    故选:BCD

     

    三、填空题

    13.设事件,且,则          .

    【答案】/0.5

    【分析】由条件概率公式计算得,再利用条件概率公式计算得出答案.

    【详解】因为,

    解得,

    所以.

    故答案为:

    14.若函数的图象都不在直线的下方,则          .

    【答案】/

    【分析】由题意知为函数的最小值,求出,利用的正负号,即可判断函数的单调性,由此即可求出的值.

    【详解】由题意知为函数的最小值,

    因为

    所以

    ,解得,令,解得

    所以函数,在区间上单调递减,在区间上单调递增,

    所以.

    故答案为:

    15.设随机变量,已知,则          .

    【答案】0.8185

    【分析】由正态分布曲线的对称性,即可求出答案.

    【详解】因为

    所以

    所以

    故答案为:

    16我国的国宝大熊猫丰腴富态,头圆尾短,头部和身体毛色黑白相间分明,形态可掬,呆萌可爱.现有福多多滚滚芝士芝麻热干面和蛋烘糕6只大熊猫,其中芝士和芝麻是双胞胎,热干面和蛋烘糕是双胞胎,现要给它们安排山月秋月云月三个场馆入住,要求每个场馆至少入住1只大熊猫,双胞胎熊猫要住在同一个场馆,则不同的分配方案有          种(用数字作答).

    【答案】36

    【分析】利用捆绑法,计算即可得出答案.

    【详解】将芝士和芝麻看成一个整体,热干面和蛋烘糕看成一个整体,

    即相当于四个对象分配给三个场馆,每个场馆至少一个对象,

    必有一个场馆含有两个对象,其余场馆各一个对象,

    可先选出有两个对象的场馆进行对象分配,再将其余对象进行分配,

    所以共有种方案.

    故答案为:36

     

    四、解答题

    17.已知二项式的展开式的二项式系数之和为32.

    (1)求展开式中项的系数;

    (2)求展开式中项的系数最大的项.

    【答案】(1)

    (2)

     

    【分析】1)先由二项式系数之和为32,求出,然后求出二项式展开式的通项公式,再令的次数为1,求出的值,再将代入通项公式可求出展开式中项的系数;

    2)由展开式的通项公式可知当时,项的系数为负,所以只要求出时项的系数,然后比较可得答案.

    【详解】1)由已知得

    则第项为

    展开式中项的系数为

    2)由(1)知第项的系数为

    时,,而

    项是项的系数最大,该项为.

    18.设函数处取极值,.

    (1)的值;

    (2)的极值,并写出的单调区间.

    【答案】(1)0

    (2)的极大值为,极小值为的单调递增区间为单调递减区间为

     

    【分析】1)由题意可知,由此即可求出的值;

    2)令,即可求出函数的极值点,由此即可列出的关系表格,由此即可求出答案.

    【详解】1)因为

    所以

    由题意得

    解得:

    时,,满足题意,

    所以.

    2)由(1)得

    所以

    ,解得

    所以的关系如下表:

    单调递增

    极大值

    单调递减

    极小值

    单调递增

    函数上单调递增,在上单调递减,

    时,的极大值为

    时,的极小值为.

    19.中医药,是包括汉族和少数民族医药在内的我国各民族医药的统称,反映了中华民族对生命健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华民族的瑰宝.某药材市场的某种中药材20182022每年7月每10克的价格(单位:元)的数据如表:

    年份

    2018

    2019

    2020

    2021

    2022

    年份代号

    1

    2

    3

    4

    5

    10克的价格

    8.0

    7.2

    5.8

    4.9

    4.1

    (1)关于的线性回归方程;

    (2)利用(1)中的回归方程,预测2023年该药材市场该种中药材每10克的价格(精确到0.01.

    附:参考公式:参考数据:.

    【答案】(1)

    (2)2.97

     

    【分析】1)求出,利用回归系数公式求出,再利用回归直线过样本中心点,求出,即可得线性回归方程;

    2)直接把代入回归方程求解即可.

    【详解】1)由题

    因为

    所以

    因为,所以

    关于的线性回归方程为

    2)将代入,得

    所以2023年该药材市场该种中药材每10克的价格为.

    20.重庆某中学为探究高二学生性别与选课的关系,在高二男女学生中分别随机抽取了50名样本学生来了解选课情况.在女生样本中任取3名学生,记选历史学生人数为;在男生样本中任取2名学生,记选物理学生人数为;已知女生样本中20人选物理,且.

    (1)完成下面的列联表;

     

    选物理

    选历史

    合计

    女生

     

     

    50

    男生

     

     

    50

    合计

     

     

    100

    (2)依据的独立性检验,能否认为该中学高二学生性别与选课有关联;

    (3)直接写出之间的关系.

    附:.

    0.1

    0.05

    0.01

    0.005

    0.001

    2.706

    3.841

    6.635

    7.839

    10.828

    【答案】(1)列联表见解析

    (2)认为高二学生性别与选课的有关联

    (3)

     

    【分析】1)设男生样本中有人选择历史,由概率关系求得值,从而可完成列联表填写;

    2)根据(1)计算出值,比较临界值可得结论;

    3)利用相互独立事件的概率关系可得.

    【详解】1)设男生样本中有人选择历史

    由题

    ,解得

     

    选物理

    选历史

    合计

    女生

    20

    30

    50

    男生

    40

    10

    50

    合计

    60

    40

    100

    2)由(1)中列表得

    根据小概率值的独立性检验,认为高二学生性别与选课的有关联的推断犯错误的概率不大于0.001,即认为高二学生性别与选课的有关联.

    3)易知事件是相互独立的,因此.

    21足球运动是世界上第一运动,它不仅体现了力量和速度的完美结合,还诠释了团队配合的重要性.现甲、乙两队进行一场足球比赛.根据以往数据统计,比赛常规时间内,甲队获胜的概率为,踢平的概率为;若常规时间内两队踢平,则进入加时赛,加时赛中,乙队获胜的概率为,踢平的概率为;若加时赛中两队踢平,则进入点球大战,点球大战中没有平局,两队获胜的概率均为.

    (1)哪一队获胜的概率大,请用数据说明;

    (2)在同一赛季中,甲乙两队相遇3次,且只进行常规比赛,胜一场计3分,平一场计1分,输一场计0分,设甲队三场比赛得分总数为,求的分布列及数学期望.

    【答案】(1)甲队获胜的概率大,理由见解析

    (2)分布列见解析,

     

    【分析】1)根据题意计算出甲队获胜的概率,即可得出答案;

    2)分别计算出甲队3胜,21平,21负,12平,12负,111负,03平,03负,021负,012负时对应的积分与概率,即可列出的分布列,求出数学期望.

    【详解】1设甲队获胜为事件

    ∴甲队获胜的概率大.

    2由题意,甲队的胜负平场次、积分和概率如下表:

    积分

    概率

    3

    0

    0

    9

    2

    1

    0

    7

    2

    0

    1

    6

    1

    2

    0

    5

    1

    0

    2

    3

    1

    1

    1

    4

    0

    0

    3

    0

    0

    3

    0

    3

    0

    2

    1

    2

    0

    1

    2

    1

    0

    1

    2

    3

    4

    5

    6

    7

    9

    所以,随机变量的概率分布列为故随机变量的数学期望:

    22.已知函数为自然对数的底数,.

    (1)判断的零点个数;

    (2)的两个零点,证明:.

    【答案】(1)答案见解析

    (2)证明见解析

     

    【分析】1)求出,讨论的取值,利用零点存在定理即可得出结论;

    2)由可将不等式转化为,再构造函数即可得证.

    【详解】1函数的定义域为

    时,恒成立,函数上是增函数;

    时,令,解得:

    所以函数上是减函数,在上是增函数,

    此时函数的最小值是

    因为

    所以当时,

    且函数上是减函数,即函数在区间上有唯一零点,

    且函数在区间上是增函数,可知函数在区间上有唯一零点,

    即当时,有两个零点;

    时,由且函数上是增函数,可知有一个零点;

    时,且函数上是减函数,在上是增函数,即有一个零点

    时,,此时没有零点;

    时,,且函数上是减函数,在上是增函数,此时没有零点;

    综上所述:当时, 有一个零点;

    时,没有零点;

    时,有两个零点.

    2)由(1)知,不妨设,则由(1)易知,

    下面证明

    即证明

    上是减函数,即证明即可,

    ,即证即可,

    上是增函数,由

    ,而

    成立.

    【点睛】本题考查零点存在定理与极值点偏移,属于难题,在第二问中由基本不等式将不等式转化为,再构造函数是解本题的关键.

     

    相关试卷

    2022-2023学年重庆市巴蜀中学校高二下学期期末数学试题含答案: 这是一份2022-2023学年重庆市巴蜀中学校高二下学期期末数学试题含答案,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年重庆市部分区高二下学期期末联考数学试题含答案: 这是一份2022-2023学年重庆市部分区高二下学期期末联考数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年重庆市长寿区高二下学期期末数学试题(B卷)含答案: 这是一份2022-2023学年重庆市长寿区高二下学期期末数学试题(B卷)含答案,共10页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022-2023学年重庆市高二下学期期末数学试题含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map