2023年秋长沙一中高一数学开学摸底考试检测卷及参考答案
展开2023年秋高一开学摸底考试检测卷
数学 参考答案
一、选择题
1.答案:A
解析:2022的相反数是,的倒数是.故选A.
2.答案:A
解析:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线.故选A.
3.答案:C
解析:若,则,符合题意;若,则显然不满足集合中元素的互异性,不符合题意;若,则,符合题意.所以或均可以.故选C.
4.答案:D
解析:由题意得,且,故且.故选D.
5.答案:C
解析:由题意可知,中心对称图形有正方形、正六边形和圆,共3个,分别用A,B,C,D表示正方形、正五边形、正六边形和圆,画树状图如下:
∴共有12种等可能的结果,两张卡片上都是中心对称图形的结果有6种,(两张卡片都是中心对称图形).故选C.
6.答案:D
解析:与不是同类项,无法合并;;;.故选D.
7.答案:C
解析:因为,,由可得,则,即,故充分性成立;由可得,故必要性成立.因此,若,,则“”是“”的充要条件.故选C.
8.答案:D
解析:根据定义可得:,故①不符合题意;
,故②符合题意;
,,解得,故③符合题意;
,,
,故④符合题意,故选D.
9.答案:A
解析:如图,过点C作,交于点,,,直线的解析式为,直线的解析式为,由,解得,点,.
.点,,,,.当点P与E重合时,的面积最小,最小值为.故选A.
10.答案:A
解析:因为,,所以,当且仅当时取等号.故选A.
11.答案:A
解析:如图,过点A作于点E,则,又,,.易证,,,,.设,则,,,,,,正方形ABCD的周长为.故选A.
12.答案:D
解析:观察图象可知,图象具有对称性,对称轴是直线,故A正确;令可得,,,,和是函数图象与x轴的交点坐标.又对称轴是直线,当或时,函数值y随x值的增大而增大,故B正确;由图象可知点和是函数图象的最低点,则当或时,函数最小值是0,故C正确;由图象可知,当时,函数值y随x值的减小而增大,当时,函数值y随x值的增大而增大,均存在大于顶点纵坐标的函数值,故当时,函数值4并非最大值,故D错误.故选D.
二、填空题
13.答案:
解析:在数轴上表示出集合A和集合B,要使,只有.
14.答案:
解析:原式.
15.答案:
解析:原来平均每人每周投递快件x件,则现在平均每人每周投递快件件,根据题意可列方程为.
16.答案:7.5
解析:如图,设球心为O,球与玻璃瓶的右侧交点为D,连接AD,过O作于M,连接OA,则.设球的半径为,则,在中,由勾股定理得,即,解得,即球的半径为.
三、解答题
17.解析:(1)原式.
···························································································4分
(2)解方程:
方程两边同时乘以得:
解得:.················································································6分
检验:当时,,
是原分式方程的解.·····························································8分
18.解析:(1)答案为:15,·····················································2分
补全统计图如下:
···········································4分
解析如下:
由题意得,被调查总人数为:(人),
所以C社团的人数为(人),
,解得,
E组所对应的圆心角是:.·
(2)(名),
所以估计选择B社团的学生大概有1000名.
·······································································6分
(3)列表如下:
| A | B | C | D | E |
A |
| ||||
B |
| ||||
C |
| ||||
D |
| ||||
E |
|
由表格可知一共有20种等可能性的结果数,其中两位同学恰好选择了B社团和C社团的结果数有2种,
所以两位同学恰好选择了B社团和C社团的概率为.·················10分
19.解析:(1)直线与双曲线均过点,
,.·········································································2分
(2)由平移的性质可知,,
,,···························································4分
由AO平移而来,,
,,···································································6分
轴,可设点C的坐标为,
将代入,得.·····················································8分
设直线PC的解析式为,,
,解得.
故直线PC的解析式为.··············································10分
(3)22·······················································12分
解析如下:如图,连接,,由平移的性质,易得,
则有,
故线段AB扫过的面积是22.
20.解析:(1)如图,过点C作于点F.
由题意得,,(米),
(米),(米),
易知,································································3分
(米),
(米).
故A,B间铺设了约220米的距离.·················································6分
(2)如图,过点C作于点G.
,,
,
,············10分
,,
,即,
符合建设文化广场的要求.··························································12分
21.解析:(1),,.
,
,,
.
,,.···························3分
(2)为等腰直角三角形.
理由如下:
如图,连接.
为正方形的中心,,
,
即.·········································································4分
,,
,
,.························································6分
,
,为等腰直角三角形.·····································7分
(3)在中,.
,,
得.
,,
得,····································9分
,
,.························12分
当时,解得或.
当点K在射线上运动,时,的长为或3.··············14分
22.解析:(1)当时,.
当时,设,依题意,
得,解得,
,
.
(2)①由题意可知,,解得.
又,,
当时,,
当时,w取最小值,,
当时,,
,对称轴为直线,
当时,w取最小值,.
,w的最小值为5625,
此时甲种花卉种植面积为,乙种花卉种植面积为,
故甲种花卉种植面积为,乙种花卉种植面积为,总费用最少,最少是5625元.
②由①知,当时,.
令,,
当时,种植总费用不超过6000元.
由①知,当时,,
令,
解得(舍去)或.
当时,种植总费用不超过6000元.
综上,x的取值范围为或.
2023济南高三开学摸底考试数学试卷及参考答案: 这是一份2023济南高三开学摸底考试数学试卷及参考答案,文件包含2023年9月开学考参考答案pdf、23济南开学摸底数学试题912191558pdf等2份试卷配套教学资源,其中试卷共6页, 欢迎下载使用。
2023年秋长沙一中高一数学开学摸底考试检测卷及参考答案: 这是一份2023年秋长沙一中高一数学开学摸底考试检测卷及参考答案,文件包含2023年秋高一开学摸底考试检测卷数学参考答案pdf、2023年秋高一开学摸底考试检测卷数学pdf、2023年秋高一开学摸底考试检测卷数学答题卡pdf等3份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
2023年秋高二数学开学摸底考试检测卷及参考答案: 这是一份2023年秋高二数学开学摸底考试检测卷及参考答案,文件包含2023年秋高二开学摸底考试检测卷数学参考答案docx、2023年秋高二开学摸底考试检测卷数学docx、2023年秋高二开学摸底考试检测卷数学答题卡pdf等3份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。