所属成套资源:2024年高考数学第一轮复习课时练及重难点突破卷
- 2024届高考数学第一轮复习:文科数学2010-2019高考真题分类训练之专题十 概率与统计第二十八讲 统计初步 试卷 0 次下载
- 2024届高考数学第一轮复习:文科数学2010-2019高考真题分类训练之专题十 概率与统计第三十讲 概率答案 试卷 0 次下载
- 2024届高考数学第一轮复习:文科数学2010-2019高考真题分类训练之专题十 概率与统计第二十九讲 回归分析与独立性检验 试卷 0 次下载
- 2024届高考数学第一轮复习:文科数学2010-2019高考真题分类训练之专题十 概率与统计第二十八讲 统计初步答案 试卷 0 次下载
- 2024届高考数学第一轮复习:文科数学2010-2019高考真题分类训练之专题六 数列 第十八讲 数列的综合应用 试卷 0 次下载
2024届高考数学第一轮复习:文科数学2010-2019高考真题分类训练之专题十 概率与统计第三十讲 概率
展开
这是一份2024届高考数学第一轮复习:文科数学2010-2019高考真题分类训练之专题十 概率与统计第三十讲 概率,共8页。
专题十 概率与统计第三十讲 概率2019年 1.(2019全国II文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A. B.C. D. 2.(2019全国III文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A. B. C. D. 2010-2018年 一、选择题1.(2018全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.2.(2018全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.73.(2017新课标Ⅰ)如图,正方形内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A. B. C. D.4.(2017新课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A. B. C. D.5.(2017天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为A. B. C. D.6.(2016年天津)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为A. B. C. D.7.(2016全国I卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A. B. C. D.8.(2016全国II卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为A. B. C. D.9.(2016年北京)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为A. B. C. D. 10.(2016全国III卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,,中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是A. B. C. D.11.(2015新课标1)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为A. B. C. D.12.(2015山东)在区间上随机地取一个数,则事件“”发生的概率为A. B. C. D. 13.(2014江西)掷两颗均匀的骰子,则点数之和为5的概率等于A. B. C. D.14.(2014湖南)在区间上随机选取一个数,则的概率为A. B. C. D.15.(2013新课标1)从中任取个不同的数,则取出的个数之差的绝对值为的概率是A. B. C. D.16.(2013安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为A. B. C. D.17.(2012辽宁)在长为12cm的线段上任取一点。现做一矩形,邻边长分别等于线段,的长,则该矩形面积大于20cm2的概率为A. B. C. D.18.(2011新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B. C. D.二、填空题19.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .20.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答)21.(2017江苏)记函数 的定义域为.在区间上随机取一个数,则 的概率是 .22.(2016年全国II卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.23.(2014新课标1)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.24.(2014新课标2)甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.25.(2014浙江)在3张奖券中有一、二等奖各1张,另1张无奖,甲、乙两人各抽取1张,两人都中奖的概率是__________;26.(2013湖北)在区间上随机地取一个数x,若x满足的概率为,则 . 27.(2011江苏)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______三、解答题28.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)29.(2018天津)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用,,,,,,表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设为事件“抽取的2名同学来自同一年级”,求事件发生的概率.30.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率。(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出的所有可能值,并估计大于零的概率.31.(2017山东)某旅游爱好者计划从3个亚洲国家,,和3个欧洲国家,,中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括但不包括的概率.32.(2016年全国II卷)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数01234保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234频数605030302010(Ⅰ)记为事件:“一续保人本年度的保费不高于基本保费”。求的估计值;(Ⅱ)记为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求的估计值;(III)求续保人本年度的平均保费估计值.33.(2016年山东)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若,则奖励玩具一个;②若,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.34.(2015湖南)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球和1个白球的甲箱与装有2个红球和2个白球的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.(Ⅰ)用球的标号列出所有可能的摸出结果;(Ⅱ)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.35.(2015北京)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(Ⅰ)估计顾客同时购买乙和丙的概率;(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?36.(2014天津)某校夏令营有3名男同学和3名女同学,其年级情况如下表: 一年级二年级三年级男同学ABC女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(Ⅰ)用表中字母列举出所有可能的结果(Ⅱ)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.37.(2012山东)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.38.(2011山东)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
相关试卷
这是一份2024届高考数学第一轮复习:文科数学2010-2019高考真题分类训练之专题十二 推理与证明第三十二讲 推理与证明,共7页。
这是一份2024届高考数学第一轮复习:文科数学2010-2019高考真题分类训练之专题十 概率与统计第二十九讲 回归分析与独立性检验答案,共6页。试卷主要包含了6.,9+3等内容,欢迎下载使用。
这是一份2024届高考数学第一轮复习:文科数学2010-2019高考真题分类训练之专题十 概率与统计第二十八讲 统计初步,共19页。试卷主要包含了01)等内容,欢迎下载使用。