【重难点讲义】浙教版数学九年级上册-第13讲 圆弧形动点轨迹与最值问题专题探究
展开第13讲 圆弧形动点轨迹与最值问题专题探究
类型一 定义法
【知识点睛】
定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)
此类问题常出现环境——折叠
求最值时常结合原理——①圆与圆外定点最值的求解方法
如图:点A为圆外定点,点P为圆周上一点,
则AP最小值=OA-r;AP最大值=OA+r
②圆上点到圆外定直线最值的求解方法
如图:直线l为圆外定直线,点P、点Q为圆周上一点,
则PH即为圆O上的点到直线l的最小值;QH为最大值
l
【类题讲练】
1.如图,△ABC中,AB=AC=5,BC=2,以AC为边在△ABC外作等边三角形ACD,连接BD,则BD= .
2.如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是 .
3.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为( )
A.68° B.88° C.90° D.112°
4.如图,点A,B的坐标分别为A(4,0),B(0,4),C为坐标平面内一点,BC=2,点M为线段AC的中点,连接OM,OM的最大值为 .
5.如图,△ABC中,AC=BC=4,∠ACB=90°,过点C任作一条直线CD,将线段BC沿直线CD翻折得线段CE,直线AE交直线CD于点F.
(1)小智同学通过思考推得当点E在AB上方时,∠AEB的角度是不变的,请按小智的思路帮助小智完成以下推理过程:
∵AC=BC=EC,
∴A、B、E三点在以C为圆心以AC为半径的圆上.
∴∠AEB= ∠ACB= °.
(2)若BE=2,求CF的长.
(3)线段AE最大值为 ;若取BC的中点M,则线段MF的最小值为 .
类型二 定边对直角
【知识点睛】
模型原理:直径所对的圆周角是直角
思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)
如图:
求最值时常结合原理——同类型一(略)
【类题讲练】
1.如图,在Rt△ABC中,∠ACB=90°,BC=3,AB=5,点D是边BC上一动点,连接AD,在AD上取一点E,使∠DAC=∠DCE,连接BE,则BE的最小值为( )
A.2﹣3 B. C.﹣2 D.
2.如图,△ABC为⊙O的内接三角形,BC=2,∠A=60°,点D为弧BC上一动点,CE垂直直线OD于点E,当点D由B点沿弧BC运动到点C时,点E经过的路径长为 .
3.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为 .
4.如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为 .
5.如图,在矩形ABCD中,AB=3,BC=4,E为边BC上一动点,F为AE中点,G为DE上一点,BF=FG,则CG的最小值为 .
6.如图,正方形OABC中,A(8,0),B(8,8),点D坐标为(﹣6,0),连接CD,点P为边OA上一个动点,连接CP,过点D作DE⊥CP于点E,连接AE,当AE取最小值时,点E的纵坐标为( )
A.3﹣ B.4﹣ C. D.
7.如图,△ABC中,∠C=90°,∠BAC=30°,AB=2,点P从C点出发,沿CB运动到点B停止,过点B作射线AP的垂线,垂足为Q,点Q运动的路径长为( )
A. B. C. D.
8.(1)【学习心得】
于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.
例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC= °.
(2)【问题解决】
如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的数.
(3)【问题拓展】
如图3,如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是 .
类型三 定边对定角
【知识点睛】
模型原理:在同圆或等圆中,同弧所对的圆周角相等
思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)
解决办法:
当∠P是那个定角时,此类问题要求点P 的运动路径长,则∠P一定为特殊角。
下以30°,45°,60°,120°为例,说明动点轨迹圆的确定方法:
若∠P=30°,以AB为边,同侧构造等边三角形AOB,O即为圆心
若∠P=45°,以AB为斜边,同侧构造等腰直角三角形AOB,O即为圆心
若∠P=60°,以AB为底,同侧构造顶角为120°的等腰三角形AOB,O即为圆心
若∠P=120°,以AB为底,异侧构造顶角为120°的等腰三角形AOB,O即为圆心
另:若∠P=135°,以AB为斜边,异侧构造等腰直角三角形AOB,O即为圆心
若∠P=150°,以AB为边,异侧构造等边三角形AOB,O即为圆心
求最值时常结合原理——同类型一(略)
【类题训练】
1.如图,已知等边△ABC的边长为2,D,E分别为BC,AC上的两个动点,且AE=CD,连接BE,AD交于点P,则CP的最小值是 .
2.如图,在矩形ABCD中,AD=5,AB=3,点E在AB上,=,在矩形内找一点P,使得∠BPE=60°,则线段PD的最小值为( )
A.2﹣2 B. C.4 D.2
3.如图,△ABC,AC=3,BC=4,∠ACB=60°,过点A作BC的平行线l,P为直线l上一动点,⊙O为△APC的外接圆,直线BP交⊙O于E点,则AE的最小值为( )
A. B.7﹣4 C. D.1
4.如图,⊙O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC交AD于点E,则OE的最小值是( )
A. B. C.2﹣ D.﹣1
5.问题提出
(1)如图①,AC为⊙O的直径,点P在弧ACB上(不与A、B重合),连接AP、BP,则∠APB
∠ACB(填“>”“<”或“=”).
问题探究
(2)如图②,在等边△ABC中,M、N为边AB和AC上的两动点,且BM=AN,连接BN、CM,BN与CM相交于P,求∠BPC度数.
问题解决
(3)如图③,在矩形ABCD中,AB=8,BC=6,M、N分别为边AD和CD上的两个动点,且AM:DN=4:3,连接BM、AN,BM与AN相交于点P,连接CP,求四边形ABCP面积的最大值.
6.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是 .
7.如图,AB为⊙O的直径,且AO=4,点C在半圆上,OC⊥AB,垂足为点O,
P为半圆上任意一点过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM
(1)求∠OMP的度数;
(2)随着点P在半圆上位置的改变,∠CMO的大小是否改变,说明理由;
(3)当点P在半圆上从点B运动到点A时,直接写出内心M所经过的路径长.
8.(1)发现:如图1,在平面内,已知⊙A的半径为r,B为⊙A外一点,且AB=a,P为⊙A上一动点,连接PA,PB,易得PB的最大值为 ,最小值为 ;(用含a,r的代数式表示)
(2)应用:①如图2,在矩形ABCD中,AB=6,BC=4,E为AD边中点,F为AB边上一动点,在平面内沿EF将△AEF翻折得到△PEF,连接PB,则PB的最小值为 ;
②如图3,点P为线段AB外一动点,分别以PA、PB为直角边,P为直角顶点,作等腰Rt△APC和等腰Rt△BPD,连接BC、AD.若AP=3,AB=7,求AD的最大值;
(3)拓展:如图4,已知以AB为直径的半圆O,C为弧AB上一点,∠ABC=60°,P为弧BC上任意一点,CD⊥CP交AP于D,连接BD,若AB=6,则BD的最小值为 .
专题69 瓜豆原理中动点轨迹直线型最值问题-中考数学重难点专项突破(全国通用): 这是一份专题69 瓜豆原理中动点轨迹直线型最值问题-中考数学重难点专项突破(全国通用),文件包含专题69瓜豆原理中动点轨迹直线型最值问题原卷版docx、专题69瓜豆原理中动点轨迹直线型最值问题解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用): 这是一份专题70 瓜豆原理中动点轨迹圆或圆弧型最值问题-中考数学重难点专项突破(全国通用),文件包含专题70瓜豆原理中动点轨迹圆或圆弧型最值问题原卷版docx、专题70瓜豆原理中动点轨迹圆或圆弧型最值问题解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
专题71 瓜豆原理中动点轨迹不确定型最值问题-中考数学重难点专项突破(全国通用): 这是一份专题71 瓜豆原理中动点轨迹不确定型最值问题-中考数学重难点专项突破(全国通用),文件包含专题71瓜豆原理中动点轨迹不确定型最值问题原卷版docx、专题71瓜豆原理中动点轨迹不确定型最值问题解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。