江西省抚州市金溪县2022-2023学年数学七年级第二学期期末考试模拟试题含答案
展开江西省抚州市金溪县2022-2023学年数学七年级第二学期期末考试模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列实数中,是方程的根的是( )
A.1 B.2 C.3 D.4
2.与可以合并的二次根式是( )
A. B. C. D.
3.如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是( )
A.32° B.35° C.36° D.40°
4.某校对八年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):4、4、3.5、5、5、4,这组数据的众数是( )
A.4 B.3.5 C.5 D.3
5.为了调查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和众数分别是( )
A.11,11 B.12,11 C.13,11 D.13,16
6.下列等式一定成立的是( )
A.-= B.∣2-=2- C. D.-=-4
7.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x元,则得到方程( )
A.=25% B.150﹣x=25% C.x=150×25% D.25%x=150
8.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地.甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法中正确的有( )
①;②甲的速度是60km/h;③乙出发80min追上甲;④乙刚到达货站时,甲距B地180km.
A.4个 B.3个 C.2个 D.1个
9.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于( )
A.7 B.8 C.9 D.10
10.顺次连接矩形四边中点所得的四边形一定是( )
A.正方形 B.矩形 C.菱形 D.等腰梯形
二、填空题(本大题共有6小题,每小题3分,共18分)
11.在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m-4),则OB的最小值是__________.
12.学校团委会为了举办“庆祝五•四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有____人.
13.请写出一个图象经过点的一次函数的表达式:______.
14.菱形的边长为,,则以为边的正方形的面积为__________.
15.计算:=________.
16.如图,点在的平分线上,,垂足为,点在上,若,则__.
三、解下列各题(本大题共8小题,共72分)
17.(8分)如图①, 已知△ABC中, ∠BAC=90°, AB="AC," AE是过A的一条直线, 且B、C在AE的异侧, BD⊥AE于D, CE⊥AE于E.
(1)求证: BD=DE+CE.
(2)若直线AE绕A点旋转到图②位置时(BD<CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请给予证明;
(3)若直线AE绕A点旋转到图③位置时(BD>CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请直接写出结果, 不需证明.
(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系.
18.(8分)如图,等腰△ABC中,已知AC=BC=2, AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.
(1)求证:四边形BCFE是平行四边形;
(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;
(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.
19.(8分)已知a,b是直角三角形的两边,且满足,求此三角形第三边长.
20.(8分)如图,在△ABC中,AB=13,BC=21,AD=12,且AD⊥BC,垂足为点D,求AC的长.
21.(8分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在BC边所在直线上, PE=PB.
(1)如图1,当点E在线段BC上时,
求证:①PE=PD,②PE⊥PD.
简析: 由正方形的性质,图1中有三对全等的三角形,
即△ABC≌△ADC,_______≌_______,和_______≌______,由全等三角形性质,结合条件中PE=PB,易证PE=PD.要证PE⊥PD,考虑到∠ECD = 90°,故在四边形PECD中,只需证∠PDC +∠PEC=______即可.再结合全等三角形和等腰三角形PBE的性质,结论可证.
(2)如图2,当点E在线段BC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)若AB=1,当△PBE是等边三角形时,请直接写出PB的长.
22.(10分)已知y是x的一次函数,且当x=-4,y=9;当x=6时,y=-1.
(1)求这个一次函数的解析式和自变量x的取值范围;
(2)当x=-时,函数y的值;
(3)当y=7时,自变量x的值.
23.(10分)如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长.
24.(12分)如图,在中,按如下步骤作图:
①以点A为圆心,AB长为半径画弧;
②以点C为圆心,CB长为半径画弧,两弧相交于点D;
③连接BD,与AC交于点E,连接AD、CD;
(1)求证:;
(2)当时,猜想四边形ABCD是什么四边形,并证明你的结论;
(3)当,,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、C
4、A
5、D
6、D
7、A
8、A
9、B
10、C
二、填空题(本大题共有6小题,每小题3分,共18分)
11、
12、250
13、y=2x-1
14、
15、7
16、1.
三、解下列各题(本大题共8小题,共72分)
17、 (1)、证明过程见解析;(2)、BD=DE–CE;证明过程见解析;(3)、BD=DE–CE;(4)、当B,C在AE的同侧时,BD=DE–CE;当B,C在AE的异侧时,BD=DE+CE.
18、(1)见解析;(2)四边形AECF是矩形,理由见解析;(3)秒或5秒或2秒
19、3或
20、20.
21、 (1)△PAB;△PAD;△PBC;△PDC,180°;(2)成立,证明见解析;(3)或.
22、(1)一次函数的解析式为y=-x+5,自变量x的取值范围是x取任意实数;(2)5.5;(3)x=-2
23、(1)见解析(2)
24、(1)证明见解析(2)四边形ABCD是菱形(3)
江西省抚州市金溪县2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案: 这是一份江西省抚州市金溪县2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,的倒数是等内容,欢迎下载使用。
2023-2024学年江西省抚州市金溪县八上数学期末统考模拟试题含答案: 这是一份2023-2024学年江西省抚州市金溪县八上数学期末统考模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,化简-2的结果是等内容,欢迎下载使用。
江西省金溪县2022-2023学年数学七年级第二学期期末经典试题含答案: 这是一份江西省金溪县2022-2023学年数学七年级第二学期期末经典试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列计算中,正确的是等内容,欢迎下载使用。