2022-2023学年安徽省六安市七下数学期末检测试题含答案
展开2022-2023学年安徽省六安市七下数学期末检测试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:
成绩(分) | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
人数(人) | 6 | 5 | 5 | 8 | 7 | 7 | 4 |
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有42名同学
B.该班学生这次考试成绩的众数是8
C.该班学生这次考试成绩的平均数是27
D.该班学生这次考试成绩的中位数是27分
2.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,下列条件中,不能使四边形DBCE成为菱形的是( )
A.AB=BE B.BE⊥DC C.∠ABE=90° D.BE平分∠DBC
3.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是是0.1.则下列说法中,正确的是( )
A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定
C.甲、乙两人成绩的稳定性相同 D.无法确定谁的成绩更稳定
4.下列实数中,无理数是( )
A. B. C. D.
5.如图,将一个边长分别为8,16的矩形纸片ABCD沿EF折叠,使C点与A点重合,则EF与AF的比值为( )
A.4 B. C.2 D.
6.下列因式分解错误的是( )
A.2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1) B.x2+2x+1=(x+1)2
C.x2y﹣xy2=xy(x﹣y) D.x2﹣y2=(x+y)(x﹣y)
7.若函数,则当函数值y=8时,自变量x的值是( )
A.± B.4 C.±或4 D.4或-
8.函数中,自变量x的取值范围是( )
A. B. C. D.x为任意实数
9.如图,a,b,c分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是
A. B. C. D.
10.一次函数的图象如图所示,则不等式的解集是( )
A. B. C. D.
11.使等式成立的x的值是( )
A.是正数 B.是负数 C.是0 D.不能确定
12.在平面直角坐标系中,点关于轴的对称点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是____(写出一个即可).
14.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是_____.
15.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为_____.
16.已知方程组,则x+y的值是____.
17.计算:﹣=_____.
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)如图,在等腰△ABC中,∠CAB=90°,P是△ABC内一点,PA=1,PB=3,PC=,将△APB绕点A逆时针旋转后与△AQC重合.求:
(1)线段PQ的长;
(2)∠APC的度数.
19.(5分)一个不透明的袋子里装有黑白两种颜色的球其40只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:
(1)摸到黑球的频率会接近 (精确到0.1);
(2)估计袋中黑球的个数为 只:
(3)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了 个黑球.
20.(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明.
21.(10分)如图,在平面直角坐标系中,△ABC的顶点A、B分别落在x轴、y轴的正半轴上,顶点C在第一象限,BC与x轴平行.已知BC=2,△ABC的面积为1.
(1)求点C的坐标.
(2)将△ABC绕点C顺时针旋转90°,△ABC旋转到△A1B1C的位置,求经过点B1的反比例函数关系式.
22.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.
(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.
23.(12分)如图,在中,点、分别是、的中点,平分,交于点,交于点.
(1)求证:四边形是菱形;
(2)若,,求四边形的周长.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、B
2、A
3、B
4、D
5、B
6、A
7、D
8、B
9、C
10、A
11、C
12、D
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、CB=BF;BE⊥CF;∠EBF=60°;BD=BF等(写出一个即可).
14、1
15、14
16、﹣1.
17、
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1);(2)135°
19、(1)0.5;(2)20;(3)10
20、(1)y=—x2+3x;(2)△EDB为等腰直角三角形,见解析.
21、(1)C(2,1);(2)经过点B1的反比例函数为y=.
22、(1)PB=PQ.证明见解析;(2)PB=PQ.证明见解析.
23、(1)见解析;(2)8.
安徽省六安市七校联考2022-2023学年七下数学期末教学质量检测模拟试题含答案: 这是一份安徽省六安市七校联考2022-2023学年七下数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
安徽省六安市名校2022-2023学年数学七下期末质量检测试题含答案: 这是一份安徽省六安市名校2022-2023学年数学七下期末质量检测试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,在△ABC中,∠A,下列命题中的假命题是等内容,欢迎下载使用。
2022-2023学年安徽省六安市裕安中学数学七下期末调研模拟试题含答案: 这是一份2022-2023学年安徽省六安市裕安中学数学七下期末调研模拟试题含答案,共8页。