专题10 概率(公式、定理、结论图表)-备战2024年新高考数学必背知识手册
展开概率(公式、定理、结论图表)
1.基本事件的特点
(1)任何两个基本事件是互斥的.
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
2.古典概型
具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.
(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.
(2)每一个试验结果出现的可能性相同.
【特别提醒】
如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.
3. 古典概型的概率公式
P(A)=.
典例1:5张奖券中有2张是中奖的,首先由甲抽一张,然后由乙抽一张,求:
(1)甲中奖的概率P(A);
(2)甲、乙都中奖的概率P(B);
(3)只有乙中奖的概率P(C);
(4)乙中奖的概率P(D).
【思路点拨】先确定事件总数,再确定四个事件中包含的基本事件个数,用古典概率公式求解.
【解析】甲、乙两人按顺序各抽一张,5张奖券分别为A1,A2,B1,B2,B3,其中A1,A2为中奖券,则基本事件为(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,A1),(A2,B1),(A2,B2),(A2,B3),(B1,A1),(B1,A2),(B1,B2),(B1,B3),(B2,A1),(B2,A2),(B2,B1),(B2,B3),(B3,A1),(B3,A2),(B3,B1),(B3,B2),共20种.
(1)若“甲中奖”,则有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,A1),(A2,B1),(A2,B2),(A2,B3),共8种,故P(A).
(2)甲、乙都中奖含有的基本事件有(A1,A2),(A2,A1),共2种,所以P(B)=.
(3)“只有乙中奖”的基本事件有(B1,A1),(B2,A1),(B3,A1),(B1,A2),(B2,A2),(B3,A2),共6种,故.
(4)“乙中奖”的基本事件有(A2,A1),(B1,A1),(B2,A1),(B3,A1),(Al,A2),(B1,A2),(B2,A2),(B3,A2),共8种,故.
【总结升华】
1、利用古典概型的计算公式时应注意两点:
(1)所有的基本事件必须是互斥的;
(2)m为事件A所包含的基本事件数,求m值时,要做到不重不漏.
2、古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数和事件所包含的结果数;
(4)用公式求出概率并下结论.
4.事件的关系与运算
| 定义 | 符号表示 |
包含关系 | 如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B) | B⊇A (或A⊆B) |
相等关系 | 若B⊇A且A⊇B | A=B |
并事件 (和事件) | 若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件) | A∪B (或A+B) |
交事件 (积事件) | 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件) | A∩B (或AB) |
互斥事件 | 若A∩B为不可能事件,则称事件A与事件B互斥 | A∩B=∅ |
对立事件 | 若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件 | A∩B=∅ P(A∪B)=1 |
5.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)互斥事件概率的加法公式
①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
②若事件B与事件A互为对立事件,则P(A)=1-P(B).
典例2:经统计,在某储蓄所一个营业窗口等候的人数及相应概率如下:
(1)至多2人排队等候的概率是多少?
(2)至少3人排队等候的概率是多少?
【思路点拨】利用互斥事件概率加法公式计算.
【解析】记“等候的人数为0”为事件A,“1人等候”为事件B,“2人等候”为事件C,“3人等候”为事件D,“4人等候”为事件E,“5人及5人以上等候”为事件F,则易知A、B、C、D、E、F互斥.
(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,
∴ P(G)=P(A+B+C)=P(A)+P(B)+P(C)
=0.1+0.16+0.3=0.56.
(2)记“至少3人排队等候”为事件H,则H=D∪E∪F,
∴ P(H)=P(D+E+F)=P(D)+P(E)+P(F)
=0.3+0.1+0.04=0.44.
【总结升华】第(2)问也可以这样解:因为G与H是对立事件,所以P(H)=1-P(G)=1-0.56=0.44.
专题16 计数原理(公式、定理、结论图表)-备战2024年新高考数学必背知识手册: 这是一份专题16 计数原理(公式、定理、结论图表)-备战2024年新高考数学必背知识手册,共11页。试卷主要包含了计数原理,排列,组合,二项式定理,杨辉三角形等内容,欢迎下载使用。
专题15 导数及其应用(公式、定理、结论图表)-备战2024年新高考数学必背知识手册: 这是一份专题15 导数及其应用(公式、定理、结论图表)-备战2024年新高考数学必背知识手册,共8页。试卷主要包含了曲线在点处切线,曲线过点处切线,利用导数求最值,.解决优化问题的步骤,))等内容,欢迎下载使用。
专题14 数列(公式、定理、结论图表)-备战2024年新高考数学必背知识手册: 这是一份专题14 数列(公式、定理、结论图表)-备战2024年新高考数学必背知识手册,共13页。试卷主要包含了定义, 前n项和公式法等内容,欢迎下载使用。