数学中考复习重难点突破——二次函数的最值
展开 数学中考复习重难点突破——二次函数的最值
一、单选题
1.二次函数 有最小值 ,则 a的值为( )
A.1 B.-1 C. D.
2.抛物线 的顶点坐标是( )
A. B. C. D.
3.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为( )
A.15元 B.400元 C.800元 D.1250元
4.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:
①若a@b=0,则a=0或b=0
②a@(b+c)=a@b+a@c
③不存在实数a,b,满足a@b=a2+5b2
④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.
其中正确的是( )
A.②③④ B.①③④ C.①②④ D.①②③
5.抛物线 ,如图所示,则函数y的最小值和最大值分别是( )
A.-3和5 B.-4和5 C.-4和-3 D.-1和5
6.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:
x
…
﹣5
﹣4
﹣3
﹣2
﹣1
0
…
y
…
4
0
﹣2
﹣2
0
4
…
下列说法正确的是( )
A.抛物线的开口向下 B.当x>﹣3时,y随x的增大而增大
C.二次函数的最小值是﹣2 D.抛物线的对称轴是x=﹣
7.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记 ,则其面积 .这个公式也被称为海伦-秦九韶公式.若 ,则此三角形面积的最大值为( )
A. B.4 C. D.5
8.如果函数y=2x2﹣3ax+1,在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为﹣23,则a的值为( )
A. B. C.或 D.
9.如图,在矩形ABCD中,AB=8,AD=6,点M为对角线AC上的一个动点(不与端点A,C重合),过点M作ME⊥AD,MF⊥DC,垂足分别为E,F,则四边形EMFD面积的最大值为( )
A.6 B.12 C.18 D.24
10.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于( )
A. B. C.3 D.4
二、填空题
11.某种火箭背向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h=﹣5t2+160t+10表示.经过 s,火箭到达它的最高点.
12.当x=0时,函数y=2x2+4的值为 .
13.飞机着陆后滑行的距离S(单位:m)与滑行的时间t(单位:s)的函数关系式是S=80t﹣2t2,飞机着陆后滑行的最远距离是 m.
14.已知二次函数 ,当 时,函数值 的最小值为 ,则 的值是 .
15.如图,在矩形OABC中,点A在x轴的正半轴,点C在y轴的正半轴.抛物线y= x2﹣ x+4经过点B,C,连接OB,D是OB上的动点,过D作DE∥OA交抛物线于点E(在对称轴右侧),过E作EF⊥OB于F,以ED,EF为邻边构造▱DEFG,则▱DEFG周长的最大值为 .
三、解答题
16.已知二次函数 的图像经过点 和点 ,求该函数的表达式,并求出当 时, 的最值.
17.如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2 cm的速度匀速运动,Q在边BC上沿BC方向以每秒1 cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).
(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.
18.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.
(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x-1)2+1的最大值和最小值.
(2)对于二次函数y=2(x-m)2+m-2,当2≤x≤4时有最小值为1,求m的值.
19.如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.
若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.
20.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
x
…
-1
0
1
2
3
4
…
y
…
8
3
0
-1
0
3
…
(1)求该二次函数的解析式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+2,y2)两点都在该函数的图象上,计算当m 取何值时,?
21.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.
(Ⅰ)求直线y=kx+b的函数解析式;
(Ⅱ)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;
(Ⅲ)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.
答案解析部分
1.【答案】A
2.【答案】D
3.【答案】D
4.【答案】C
5.【答案】B
6.【答案】D
7.【答案】C
8.【答案】D
9.【答案】B
10.【答案】A
11.【答案】16
12.【答案】4
13.【答案】800
14.【答案】
15.【答案】
16.【答案】解:∵二次函数y=x2+bx+c的图象经过点(4,3),(3,0),
∴ ,
解得, ,
∴函数解析式为:y=x2-4x+3,
y=x2-4x+3=(x-2)2-1,
∴当x=0时,y有最大值是3.
17.【答案】解:(1)∵S△PBQ=PB·BQ,PB=AB-AP=18-2x,BQ=x,
∴y=(18-2x)x,即y=-x2+9x(0
∵当0
18.【答案】(1)解:∵在函数y=2x+1中,k=20,∴函数y随x的增大而增大,∴y=2x+1的最大值为9,最小值为5; 中,k=20,∴函数y随x的增大而减小,则函数y=的最大值为1,最小值为 ;
y=2(x+1)2-1的最大值为19,最小值为3.
(2)解:①当m=2时,当x=2时,y最小值为1,代入解析式,解得m= (舍去)或m=1∴m=1②当2≤m≤4时,m-2=1,∴m=3
③当m>4时,当x=4时,y最小值为1,代入解析式,无解.综上所述:m=1或m=3
19.【答案】解:(1)∵点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,
∴OP=t,而OC=2,
∴P(t,0),
设CP的中点为F,则F点的坐标为(,1),
∴将线段CP的中点F绕点P按顺时针方向旋转90°得点D,其坐标为(t+1,);
(2)S=
∴当t=2时,S最大,最大值为1
(3)∵∠CPD=900,∴∠DPA+∠CPO=900,∴∠DPA≠900,故有以下两种情况:
①当∠PDA=900时,由勾股定理得,
又,,
,
即t2-4t-12=0,解得t1=2,t2=6(不合题意,舍去)
②当∠PAD=900时,点D在BA上,故AE=3-t,得t=3
综上,经过2秒或3秒时,△PAD是直角三角形;
(4)∵根据点D的运动路线与OB平行且相等,OB=2,
∴点D运动路线的长为2.
20.【答案】(1)由表格得:二次函数与x轴的两交点分别为(1,0),(3,0),
设二次函数解析式为y=a(x-1)(x-3),
将x=0,y=3代入得:3=3a,即a=1,
则二次函数解析式为y=(x-1)(x-3)=x2-4x+3.
(2)由(1)y=x2-4x+3=(x-2)2-1,
则当x=2时,ymin=-1.
将A坐标代入二次函数解析式得:y1=m2-4m+3;
B坐标代入二次函数解析式得:y2=(m+2)2-4(m+2)+3=m2-1,
若y1>y2,则m2-4m+3>m2-1,
解得:m<1.
21.【答案】解:(Ⅰ)由题意可得 ,解得 ,
∴直线解析式为y= x+3;
(Ⅱ)如图1,过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,
则∠AHQ=∠ABO,且∠AHP=90°,
∴∠PHQ+∠AHQ=∠BAO+∠ABO=90°,
∴∠PHQ=∠BAO,且∠AOB=∠PQH=90°,
∴△PQH∽△BOA,
∴ = = ,
设H(m, m+3),则PQ=x﹣m,HQ= m+3﹣(﹣x2+2x+1),
∵A(﹣4,0),B(0,3),
∴OA=4,OB=3,AB=5,且PH=d,
∴ = = ,
整理消去m可得d= x2﹣x+ = (x﹣ )2+ ,
∴d与x的函数关系式为d= (x﹣ )2+ ,
∵ >0,
∴当x= 时,d有最小值,此时y=﹣( )2+2× +1= ,
∴当d取得最小值时P点坐标为( , );
(Ⅲ)如图2,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,
∴CE+EF=C′E+EF,
∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,
∵C(0,1),
∴C′(2,1),
由(Ⅱ)可知当x=2时,d= ×(2﹣ )2+ = ,
即CE+EF的最小值为 .
专题22 动点在二次函数中的综合(3)-中考数学重难点专项突破(全国通用): 这是一份专题22 动点在二次函数中的综合(3)-中考数学重难点专项突破(全国通用),文件包含专题22动点在二次函数中的综合3原卷版docx、专题22动点在二次函数中的综合3解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
专题21 动点在二次函数中的综合(2)-中考数学重难点专项突破(全国通用): 这是一份专题21 动点在二次函数中的综合(2)-中考数学重难点专项突破(全国通用),文件包含专题21动点在二次函数中的综合2原卷版docx、专题21动点在二次函数中的综合2解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
专题20 动点在二次函数中的综合(1)-中考数学重难点专项突破(全国通用): 这是一份专题20 动点在二次函数中的综合(1)-中考数学重难点专项突破(全国通用),文件包含专题20动点在二次函数中的综合1原卷版docx、专题20动点在二次函数中的综合1解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。