终身会员
搜索
    上传资料 赚现金
    人教版数学小升初暑假衔接 专题08 绝对值(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      人教版数学小升初暑假衔接 专题08 绝对值(原卷版).docx
    • 解析
      人教版数学小升初暑假衔接 专题08 绝对值(解析版).docx
    人教版数学小升初暑假衔接 专题08 绝对值(原卷版+解析版)01
    人教版数学小升初暑假衔接 专题08 绝对值(原卷版+解析版)02
    人教版数学小升初暑假衔接 专题08 绝对值(原卷版+解析版)03
    人教版数学小升初暑假衔接 专题08 绝对值(原卷版+解析版)01
    人教版数学小升初暑假衔接 专题08 绝对值(原卷版+解析版)02
    人教版数学小升初暑假衔接 专题08 绝对值(原卷版+解析版)03
    还剩15页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版数学小升初暑假衔接 专题08 绝对值(原卷版+解析版)

    展开
    这是一份人教版数学小升初暑假衔接 专题08 绝对值(原卷版+解析版),文件包含人教版数学小升初暑假衔接专题08绝对值解析版docx、人教版数学小升初暑假衔接专题08绝对值原卷版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。

    专题08 绝对值

    1.理解并掌握绝对值的代数意义和几何意义;
    2.会求已知数的绝对值;能解含绝对值的方程;
    3.能利用绝对值的意义求最值。

    【思考2】下图中点A与原点之间的距离是多少?点B与原点之间的距离是多少?


    【思考2】一个数的绝对值与这个数有什么关系?


    1.绝对值
    1)绝对值的概念:一般地,数轴上表示数的点与原点的距离叫做数的绝对值,记作.
    2)绝对值的几何意义:一个数的绝对值就是数轴上表示数的点与原点的距离.
    3)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;的绝对值是.
    即:(1)如果,那么;(2)如果,那么;(3)如果,那么.
    可整理为:,或,或
    4)绝对值具有非负性,取绝对值的结果总是正数或.即:
    2.有理数的比较大小
    1)两个负数,绝对值大的反而小.
    2)正数大于零,零大于负数,正数大于负数.
    3)利用数轴:在数轴上,右边的点所对应的数总比左边的点所对应的数大.
    3.归纳: ①绝对值等于它本身的数是: 非负数 ;②绝对值大于它本身的数是: 负数 ;
    ③绝对值等于它的相反数的数是: 非正数 ;④绝对值最小的有理数是: 0 ;
    ⑤绝对值最小的正整数是: 1 ;⑥绝对值最小的负整数是: -1 .

    考点1、绝对值的概念与意义
    【解题技巧】一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a.
    例1.(2023·江苏南通·统考二模)(    )
    A. B. C. D.2
    例2.(2023·福建莆田·七年级统考期末)在数轴上表示任何一个有理数的绝对值的点的位置,只能在数轴上(  )
    A.原点两旁 B.任何一点 C.原点右边 D.原点或其右边
    例3.(2023·河北保定·校考模拟预测)下列说法错误的是(     )
    A.相反数是它本身的数是 B.绝对值是它本身的数是正数
    C.的绝对值是它本身 D.有理数的相反数仍是有理数
    变式1.(2023·四川遂宁·七年级校考阶段练习)的绝对值是( );绝对值等于8的数是( ).
    变式2.(2023·四川广安·统考二模)的绝对值的相反数是(    )
    A.2023 B. C. D.
    变式3.(2022秋·甘肃庆阳·七年级统考期中)下列说法正确的是(    )
    A.有理数的绝对值一定比0大 B.有理数的相反数一定比0小
    C.如果两个有理数的绝对值相等,那么这两个数相等 D.互为相反数的两个数的绝对值相等
    变式4.(2022·河南驻马店·七年级校考期末)如果,下列的取值不能使这个式子成立的是(    )
    A. B.0 C.1 D.取任何负数

    考点2、绝对值方程
    【解题技巧】根据绝对值的意义,去掉绝对值,转化为两个一元一次方程,解方程即可。
    例1.(2022秋·广东东莞·七年级校考阶段练习)已知,则_____.
    例2.(2022秋·湖南岳阳·七年级校考阶段练习)先阅读下列解题过程,然后解答后面两个问题.
    解方程:.
    解:当时,原方程可化为,解得;
    当时,原方程可化为,解得;
    所以原方程的解是或.
    (1)解方程:.
    (2)当为何值时,关于的方程.①无解;②只有一个解;③有两个解.



    变式1.(2022秋·广东广州·七年级校考阶段练习)若,则的值为_____.
    变式2.(2022春·河北承德·七年级统考期中)数轴上,表示与2的点之间的距离是,表示与的点之间的距离是,即数轴上两点之间的距离等于较大数与较小数的差,若不知道数轴上两数的大小,则表示数与的点之间的距离可以表示为,利用上述结论解决如下问题.
    若,求的值.



    考点3、绝对值的化简求值
    【解题技巧】绝对值化简步骤:①判断绝对值符号里式子的正负;②将绝对值符号改为小括号:若正数,绝对值前的正负号不变(即本身);若负数,绝对值前的正负号改变(即相反数).③去括号:括号前是“+”,去括号,括号内不变; 括号前是“-”,去括号,括号内各项要变号.④化简.
    注意:注意改绝对值符号时与去括号时是否需要变号,且变号的正确性。
    例1.(2023秋·云南文山·七年级统考期末)若x是一个有理数,且,则(   )
    A. B. C.4 D.-2
    例2.(2022秋·河南南阳·七年级校考阶段练习)有理数、、在数轴上的位置如图:

    (1)比较大小(填“”或“”号).①______;② ______;③______;
    (2)化简:.


    变式1.(2023·河南焦作·七年级校考期中)实数a,b,c在数轴上的位置如图所示,且

    (1)若,求a的值.(2)用“”把a,,b,c连按越来.



    变式2.(2023秋·海南·七年级统考期末)已知有理数,,,且.

    (1)在如图所示的数轴上将a,b,c三个数表示出来;(2)化简:.



    考点4、绝对值的非负性
    【解题技巧】(1)根据绝对值的非负性“若几个非负数的和为0,则每一个非负数必为0”,即若a+b=0,则a=0且b=0.(2)。
    例1.(2023·绵阳市·九年级一模)若与互为相反数,则的值为( )
    A.1 B.-1 C.5 D.-5
    例2.(2022秋·云南楚雄·七年级校考阶段练习)对于任意有理数,下列式子中取值不可能为0的是(    )
    A. B. C. D.
    变式1.(2023秋·贵州安顺·九年级统考期末)代数式的最小值是(  )
    A.1 B.2 C.3 D.4
    变式2.(2023秋·甘肃酒泉·七年级统考期末)若,则 _______.

    考点5、有理数大小比较
    【解题技巧】有理数的大小比较法则:正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.
    例1.(2023·山东聊城·统考二模)有理数,,0,中,绝对值最大的数是(    )
    A. B. C.0 D.
    例2.(2023·陕西西安·校考模拟预测)下列有理数大小关系判断正确的是( )
    A. B. C. D.
    变式1.(2023·重庆九龙坡·一模)在,,0,8,这四个数中,绝对值最大的数是(    )
    A. B. C.0 D.8
    变式2.(2022秋·浙江·七年级统考开学考试)下列两数比较大小,正确的是(    )
    A. B. C. D.
    变式3.(2022秋·安徽蚌埠·七年级校考阶段练习)如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中A,B两点间的距离与B,C两点间的距离相等,如果,那么该数轴的原点O的位置应该在(    )

    A.点A的左边 B.点B与C之间,靠近点B
    C.点A与B之间,靠近点A D.点A与B之间,靠近点B

    考点6、绝对值的实际应用
    【解题技巧】常见三种应用:
    1)质量问题,绝对值越小,越接近质量标准;
    2)小虫爬行问题,判断小虫是否能重回原点,将所有数据相加与0相比较,求距离时是各数的绝对值,与数的正负性无关;
    3)数轴上数的表示问题,点向左移动时,原数减去移动的距离;点向右移动时,原数加上移动的距离。
    例1.(2023秋·河北廊坊·七年级校考期末)小杨同学检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是(    )
    A. B. C. D.
    例2.(2022·河南·商丘市七年级期末)创建文明城期间,一天上午,志愿者小明从柒悦城出发,乘坐3路公交车,始终在该线路的公交站点做志愿者服务,3路车为神火大道上南北方向直线上的公交线路,小明坐车范围北起火车站,南至香君路口,途中共设12个上下车站点,如图所示:

    下午,小明到A站下车时,本次志愿者服务活动结束,如果规定向南为正,向北为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,-2,+6,-11,+8,+1,-3,-2,-4,+7;若相邻两站之间的平均距离为0.8千米,求这次小明志愿服务期间乘坐公交车行进的总路程是多少千米?



    变式1.(2022秋·山东青岛·七年级校考阶段练习)一批零件超过规定长度记为正数,短于规定长度记为负数,越接近规定长度质量越好.检查其中四个,结果如下:第一个为0.13mm,第二个为mm,第三个为mm,第四个为0.15mm,则质量最好的零件为(    )
    A.第一个 B.第二个 C.第三个 D.第四个
    变式2.(2022·浙江·七年级专题练习)一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?









    考点7、绝对值的几何意义
    【解题技巧】几何意义:表示x到点a的距离
    (1)找零点(分界点);(2)根据零点将数轴分段;(3)利用“数形结合”思想,求解绝对值的值(几何法);或者根据分段情况,分析绝对值内式子的正负,去绝对值(代数法)。
    注:(1)一个式子中有多个绝对值式子时, x前的系数必须相同才可以用该“数形结合”的方法;(2)分段的时候,切不可遗漏数轴上的点,也不可重复讨论。
    例1.(2022·山东济宁·七年级期末)大家知道,,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距离.又如式子,它在数轴上的意义是:表示6的点与表示3的点之间的距离.类似地,式子在数轴上的意义是______.

    例2.(2022·湖南邵阳·七年级期末)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作.当A、B两点中有一点为原点时,不妨设A点在原点.如图所示,则,当A、B两点都不在原点时:

    (1)如图所示,点A、B都在原点的右边,不妨设点A在点B的左侧.则

    (2)如图所示,点A、B都在原点的左边,不妨设点A在点B的右侧.则

    (3)如图所示,点A、B分别在原点的两边,不妨设点A在原点的右侧,则

    回答下列问题:(1)综上所述,数轴上A、B两点之间的距离_______________.
    (2)数轴上表示3和的两点A和B之间的距离_______________.
    (3)数轴上表示x和的两点A和B之间的距离_________.如果,则x的值为________.
    (4)若代数式有最小值,则最小值为_______________.

    变式1.(2022·河南安阳·七年级期末)若x为任意有理数,表示在数轴上x表示的点到原点的距离,表示在数轴上x表示的点到a表示的点的距离,则的最小值为________.
    变式2.(2023•广西七年级月考)同学们都知道,|3﹣(﹣1)|表示3与﹣1之差的绝对值,实际上也可理解为3与﹣1两数在数轴上所对的两点之间的距离.试探索:(1)求|3﹣(﹣1)|=   .
    (2)找出所有符合条件的整数x,使得|x﹣3|+|x﹣(﹣1)|=4,这样的整数是   .

    变式3.(2022秋·江苏南京·七年级校考阶段练习)如果对于某一特定范围内的任意允许值,P = |1 - 4x| + |1 - 5 x |+|1-6 x| + |1 - 7 x| + |1 - 8 x |的值恒为一常数,则此值为_________.


























    A级(基础过关)
    1.(2022秋·广东佛山·七年级校考阶段练习)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是(  )
    A. B. C. D.
    2.(2022秋·广东深圳·七年级校考期末)的相反数(  )
    A. B. C. D.
    3.(2023秋·浙江宁波·七年级统考期末)、、、四个点在数轴上的位置如图所示,则这四个点表示的四个数中绝对值最大的是(    )

    A. B. C. D.
    4.(2022秋·四川眉山·七年级校考期中)下列说法正确的有(    )
    ①0是绝对值最小的有理数;②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数;④两个数比较,绝对值大的反而小.
    A.1个 B.2个 C.3个 D.4个
    5.(2022·重庆初三模拟)下列命题正确的是(  )
    A.绝对值等于本身的数是正数 B.绝对值等于相反数的数是负数
    C.互为相反数的两个数的绝对值相等 D.绝对值相等的两个数互为相反数
    6.(2023秋·湖南株洲·七年级统考期末)已知有理数,在数轴上的位置如图所示,则将有理数,1,按从小到大的顺序用“<”连接起来是_____.

    7.(2022秋·新疆阿克苏·七年级统考期中)的最小值是______.
    8.(2023秋·四川成都·七年级统考期末)已知有理数、、,在数轴上对应点的位置如图所示,则化简后的结果是 ______ .

    9.(2022秋·广东揭阳·七年级统考期末)若,则______.
    10.(2023·湖南长沙·校联考二模)如果,那么_____.
    11.(2023秋·广东云浮·七年级校考期末)比较大小:_________.(填“>”“<”或“=”)
    12.(2023秋·广西南宁·七年级南宁市天桃实验学校校考期末)已知,,在数轴上的位置如图所示,所对应的点分别为,,.

    (1)填空:,之间的距离为______,,之间的距离为______.(2)化简:.

    13.(2022秋·浙江台州·七年级统考期末)(1)在数轴上分别表示出下列三个数:,,,

    (2)有理数m、n在数轴上的对应点如图所示:
    ①在数轴上分别表示出数, ,②把,,,这四个数从小到大用“”号连接.

    14.(2022秋·山西·七年级统考期末)对于有理数a,b,n,d,若,则称a和b关于n的“相对距离”为d,例如,,则2和3关于1的“相对距离”为3.
    (1)和4关于1的“相对距离”为________.(2)若a和5关于2的“相对距离”为6,求a的值.




    B级(能力提升)
    1.(2023春·吉林长春·七年级校考阶段练习)若,则a的值可以是(  )
    A.5 B.3 C.1 D.
    2.(2023秋·黑龙江佳木斯·七年级校考期末)若,则和的关系为(    )
    A.和相等 B.和互为相反数 C.和相等或互为相反数 D.以上答案都不对
    3.(2022秋·江苏南京·七年级校考阶段练习)若是有理数,则的值(  )
    A.是负数 B.是非负数 C.必是正数 D.无法确定
    4.(2023·广东广州·统考一模)已知,则下列结论中成立的是(  )
    A. B. C. D.
    5.(2020秋·河南郑州·七年级校考期中)当______时,有最值,最值是__________________.
    6.(2022·四川达州·七年级校考期中)点A,B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离,若x是一个有理数,且,则______.
    7.(2022秋·浙江·七年级专题练习)问题提出:学习了|a|为数轴上表示a的点到原点的距离之后,小凡所在数学兴趣小组对数轴上分别表示数a和数b的两个点A,B之间的距离进行了探究:
    (1)利用数轴可知5与1两点之间距离是    ;一般的,数轴上表示数m和数n的两点之间距离为    .
    问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.
    问题解决:(3)如图在十四运的场地建设中有一条直线主干道L,L旁依次有3处防疫物资放置点A,B,C,已知AB=800米,BC=1200米,现在设计在主干道L旁修建防疫物资配发点P,问P建在直线L上的何处时,才能使得配发点P到三处放置点路程之和最短?最短路程是多少?




    8.(2022春·山东七年级期中)阅读以下例题:解方程:,
    解:①当时,原方程可化为一元一次方程,解这个方程得;
    ②当时,原方程可化为一元一次方程,解这个方程得;
    ③当,即时,原方程可化为,不成立,此时方程无解.
    所以原方程的解是或.
    (1)仿照例题解方程:.
    (2)探究:当b为何值时,方程满足:①无解;②只有一个解;③有两个解.



    9.(2022秋·辽宁抚顺·七年级统考期中)阅读材料:小兰在学习数轴时发现:若点M,N表示的数分别为,3,则线段的长度可以这样计算或,那么当点M,N表示的数分别为m,n时,线段的长度可以表示为或.请你参考小兰的发现,解决下面的问题.
    在数轴上,点A,B,C分别表示数a,b,c
    给出如下定义:若,则称点B为点A,C的双倍绝对点.

    (1)如图1, ,,点D,E,F在数轴上分别表示数,5,6,在这三个点中,点  是点A,C的双倍绝对点;(2)点B为点A,C的双倍绝对点①,,求b的值;②,,求c的值.


    10.(2022秋·浙江·七年级专题练习)小张、小潘、小王和小昊住在同一条东西走向的街上,分别记为A、B、C和D四点,规定向东为正,以B为原点画成如下图所示的数轴.“十一”假期,他们准备结伴去温州乐园,现有网约车来载他们去.

    (1)从数轴看,点C表示的数是   ,点D表示的数是   .
    (2)如果网约车从原点出发,依次接上小潘、小王和小昊后,再向西行驶2000个单位长度接到小张.请问小张家的位置在数轴上表示的数是多少?并将其在数轴上表示出来.
    (3)如果网约车先接小张、小潘和小王,车应停在哪里使他们三人走的路程之和最小?最小路程是多少?
    (4)触类旁通:的最小值是   .(直接写出答案)

    11.(2022秋·江苏·七年级期末)如图,数轴上有点a,b,c三点.

    (1)用“<”将a,b,c连接起来.(2)b-a______0(填“<”“>”,“=”);
    (3)化简|c-b|-|c-a|+|a-1|;(4)用含a,b的式子表示下列的最小值.
    ①|x-a|+|x-b|的最小值为_______;②|x-a|+|x-b|+|x-c|的最小值为_______.
























    C级(培优拓展)
    1.(2022秋·江苏无锡·七年级校考期中)规定:,.例如,.下列结论中,正确的个数是(  )
    ①能使成立的的值为或;②若,则;
    ③式子的最小值是;④式子的最大值是.
    A. B. C. D.
    2.(2022秋·河南南阳·七年级统考期中)若a为有理数,则表示的数是(   )
    A.负数 B.正数 C.非负数 D.非正数
    3.(2023春·浙江·七年级期末)方程的整数解共有(    )
    A.1010 B.1011 C.1012 D.2022
    4.(2022秋·重庆江津·七年级统考期末)在解决数学实际问题时,常常用到数形结合思想,比如:的几何意义是数轴上表示数的点与表示数的点的距离,的几何意义是数轴上表示数的点与表示数的点的距离.结合以上知识,下列说法中正确的个数是(    )
    ①若,则或;②若,则;
    ③若,则;④关于的方程有无数个解.
    A.1 B.2 C.3 D.4
    5.(2023秋·河南南阳·七年级统考期末)对于有理数a,b,c,d,给出如下定义:如果.那么称a和b关于c的相对距离为d,如果m和3关于1的相对距离为5,那么m的值为_________.
    6.(2022秋·福建泉州·七年级校联考期中)已知,则的最大值是________.最小值是________.
    7.(2023秋·辽宁鞍山·七年级统考期末)阅读材料并回答问题:
    的含义是数轴上表示数的点与原点的距离,即,也就是说,表示在数轴上数与数0对应的点之间的距离;因此可以推断表示在数轴上数与数1对应的点之间的距离.例如,,就是在数轴上到1的距离为2的点对应的数,即为或;回答问题:
    (1)若,则的值是______;(2)利用上述方法解下列方程:①;②
    8.(2022秋·河南商丘·七年级统考期末)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.
    【阅读】表示3与1的差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;可以看作,表示3与的差的绝对值,也可理解为3与两数在数轴上所对应的两点之间的距离.

    【探索】(1)数轴上表示5与的两点之间的距离是 ___________;(2)①若,则x=___________;
    ②若使x所表示的点到表示2和的点的距离之和为5,所有符合条件的整数的和为 ___________;
    【动手折一折】小明在草稿纸上画了一条数轴进行操作探究:
    (3)折叠纸面,若1表示的点和表示的点重合,则4表示的点和 ___________表示的点重合;
    (4)折叠纸面,若3表示的点和表示的点重合,①则表示的点和 ___________表示的点重合;
    ②这时如果A,B(A在B的左侧)两点之间的距离为且A,B两点经折叠后重合,则点A表示的数是 ___________,点B表示的数是 ___________;
    【拓展】(5)若,则x=___________.

    9.(2022秋·河南平顶山·七年级统考期中)数轴是一个非常重要的数学工具,它是“数形结合”的基础.我们知道绝对值的几何含义为数轴上一点到原点的距离.如意义为表示5的点到原点的距离,也可理解为,即5到0点的距离.又如表示5、3在数轴上对应的两点之间的距离;一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为.
    (1)数轴上表示2和5的两点之间的距离是___________,数轴上表示和的两点之间的距离是___________,数轴上表示1和的两点之间的距离是___________;(2)利用上面的知识回答:数轴上表示x和-1的两点A、B之间的距离是___________,如果,那么x的值为___________;
    (3)应用: 小明妈妈要租房,使小明到学校与妈妈到上班地点距离和最小,若把租房地记作x,妈妈上班地点记作1,小明学校记作2,那么距离和|的最小值是:___________.
    (4)拓展:的最小值是:___________.
    10.(2022秋·全国·七年级专题练习)学习了绝对值我们知道,,用这一结论可化简含有绝对值的代数式.如化简代数式时,可令和,分别求得和,我们就称和分别为|和|的零点值在有理数范围内,零点值,可将全体有理数分成不重复、不遗漏的五个部分,可在演草本上画出数轴,找到对应的部分然后进行分类讨论如下:

    ①当时,原式;
    ②当时,原式;
    ③当时,原式;
    ④当时,原式;
    ⑤当时,原式.
    综上所述,原式,以上这种分类讨论化简方法就叫零点分段法,其步骤是:求零点、分段、区段内化简、综合,根据以上材料解决下列问题:
    (1)化简代数式;(2)的最大值是 .(请直接写出结果)



    11.(2022秋·河南南阳·七年级校考阶段练习)如图,请回答问题:

    (1)点B表示的数是______,点C表示的数是______.
    (2)折叠数轴,使数轴上的点B和点C重合,则点A与数字______重合.
    (3)m、n两数在数轴上所对的两点之间的距离可以表示为,如5与两数在数轴上所对的两点之间的距离可以表示为,从而很容易就得出在数轴上表示5与两点之间的距离是7.
    ①若x表示一个有理数,则的最小值=______.
    ②若x表示一个有理数,且,则满足条件的所有整数x的和是______.
    ③当x=______时,取最小值.
    ④若x表示一个有理数,且,则有理数x的取值范围______.
    ⑤若将数轴折叠,使得1表示的点与表示的点重合,此时M、N两点也互相重合,若数轴上M、N两点之间的距离为2022(M在N的左侧),则M、N两点表示的数分别是:M:______,N:______.


    12.(2022秋·浙江·七年级专题练习)我们知道,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上有两个点A,B,分别用a,b表示,那么A,B两点间的距离为,利用此结论,回答以下问题:(1)数轴上表示2和5的两点之间的距离是  ,数轴上表示﹣2和﹣5的两点之间的距离是  ,数轴上表示1和﹣3的两点之间的距离是  ;
    (2)数轴上表示x和﹣1的两点A.B之间的距离是  ,如果|AB|=2,那么x的值为  ;
    (3)求|x﹣3|+|x+5|的最小值是:  .(4)若|x﹣3|=|x+5|,则x=  .若|x﹣3|=3|x+5|,则x=  .


    相关试卷

    专题08《 单项式和多项式》达标检测卷-暑假小升初数学衔接(人教版)(原卷版): 这是一份专题08《 单项式和多项式》达标检测卷-暑假小升初数学衔接(人教版)(原卷版),共5页。试卷主要包含了观察下面的单项式等内容,欢迎下载使用。

    专题03《 绝对值》达标检测卷-暑假小升初数学衔接(人教版)(原卷版): 这是一份专题03《 绝对值》达标检测卷-暑假小升初数学衔接(人教版)(原卷版),共4页。

    专题03《绝对值》知识讲练-暑假小升初数学衔接(人教版)(原卷版): 这是一份专题03《绝对值》知识讲练-暑假小升初数学衔接(人教版)(原卷版),共8页。

    数学口算宝
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版数学小升初暑假衔接 专题08 绝对值(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map