2023年广东省深圳市龙华新区实验学校六年级数学第二学期期末经典试题含解析
展开2023年广东省深圳市龙华新区实验学校六年级数学第二学期期末经典试题
一、认真审题,细心计算
1.直接写得数.
+= += -=
1-= -= 1--=
2.脱式计算.
3.解方程。
二、认真读题,准确填写
4.在括号里填上适当的体积单位或容积单位。
一瓶矿泉水的容积约是500(_____) 一桶矿泉水的容积约是18(___)
车厢的体积约是15(___)
5.把3米长的绳子剪成米的小段,可以剪(_______)段。每段占全长的(_______)
6.在里填上“>”“<”或“=”。
0.375
7.把5升果汁平均倒入6个杯子,每个杯子装了这些果汁的(_____),每个杯子装了(_____)升果汁。
8.把一个长方体分割成若干个小正方体,它的体积_____,表面积_____
A.不变 B.增加 C.减少.
9.一篮苹果,5个5个地取, 7个7个地取,都能正好取完。这篮苹果至少有(____)个。
10.把4米长的绳子平均分成5段,每段长是全长的_____,每段长_____米.
11.在括号里填最简分数。
300克=(_____)千克 45分=(_____)时
12.先找出下面各数的因数,再把它们按素数、合数分别填入圈里。(从小到大填写)
61的因数有____
69的因数有_____
素数____
合数_____
13.一筐苹果,平均分给5个人,最后剩下2个;平均分给13个人,最后也剩下2个。这筐苹果最少有(______)个。
14.如下图,把长方体木块截成两段后,表面积增加36dm2,原来木块的体积是(________)dm3。
三、反复比较,精心选择
15.摆一摆,看一看.
从上面看到的形状是( )
A. B. C.
16.下图中能表示长方体和正方体关系的是( ).
A.
B.
C.
17.已知,那么( )。
A.等于 B.小于 C.大于 D.可能小于或大于
18.不但能表示数量的多少,而且能清楚地表示出数量的增减变化情况是( )统计图。
A.条形 B.折线 C.扇形 D.无法确定
19.一个正方体至少切( )次才能切成新的正方体。
A.1 B.2 C.3 D.4
20.4个棱长是1厘米的小正方体拼成一个长方体,表面积会( ),体积会( )。
A.不变;减少 B.增加;不变 C.减少;不变
21.下列结果是偶数的有( )个.
奇数+偶数 奇数+奇数 偶数+偶数 奇数×偶数 奇数×奇数 偶数×偶数
A.6 B.5 C.4 D.3
22.1千克的与2千克的相比,( )。
A.一样重 B.1千克的重
C.2千克的重 D.不能比较
23.9盒月饼中,有1盒质量不同,至少称( )次能保证找出这盒月饼.
A.2 B.3 C.4 D.5
24.修一条长3千米的路,每天修千米,( )天可以修完。
A. B. C.7 D.12
四、动脑思考,动手操作
25.用画图的方法说明=是正确的。
26.在下图中画出棱长为1cm的正方体的表面展开图(至少2种,用阴影表示)。(每1小格表示1cm2)
五、应用知识,解决问题
27.甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
28.一个快递公司的收费标准如下:货物首重(不超过1千克的),收费9元;续重(超过1千克的部分),每千克增加收费4.5元(不足1千克按1千克计算)。李叔叔快递一件物品,共付快递费27元,他快递的这件物品最多重多少千克?
29.某农厂去年产粮250吨,比前年增产25吨,增产百分之几?
30.如图,组合体是由8个棱长2cm的小正方体组成的,回答以下问题.
(1)分别画出从正面、上面、右侧看到的图形.
(2)请画出(1)中从右侧观察到的图形,绕A点逆时针旋转90°再向上平移3格后得到的图形B,最后向左平移6格得到的图形C.在(1)中的方格纸上作答,要求标注出 “A”点,“B图”,“C图”.
(3)这个组合体的表面积是多少平方分米?
(4)至少再添加多少个小正方体,才能使这个组合体变为一个大的正方体?添加的小正方体的体积是多少立方厘米?
31.一块长35cm,宽25cm的长方形铁皮,从四个角各切掉一个边长为5cm的正方形,焊接成一个无盖盒子。这个盒子用了多少铁皮?它的容积是多少?
32.王明去披萨店点了一个12寸的披萨,过了一会儿服务员过来说:“不好意思,现在12寸的披萨没有了,给您换成2个6寸的可以吗?”你认为可以吗?请通过计算加以说明。(提示:12寸、6寸是指披萨的直径,分别约为、,披萨厚度一样。)
参考答案
一、认真审题,细心计算
1、
【详解】略
2、
【详解】略
3、x=;x=0.5
【分析】(1)据等式的性质方程的两边同时减求解;
(2)据等式的性质方程的两边同时加,再同时除以2求解。
【详解】
解:
x=
解:
2x=1
x=1÷2
x=0.5
根据等式的性质解方程,记得等号要对齐。
二、认真读题,准确填写
4、毫升 升 立方米
【解析】略
5、15
【解析】略
6、> = <
【解析】略
7、
【解析】略
8、A B
【解析】把一个长方体分割成若干个小正方体后,所占的空间没变,所以体积不变,但是表面积变了,增加了若干个切割面的面积.
9、35
【解析】略
10、
【解析】每段是全长的:1÷5=,
每段的长为:4×=(米).
故答案为,.
11、
【解析】略
12、1,61 1,3,23,69 3,23,61 69
【分析】根据找一个数的因数的方法进行解答。
【详解】61的因数有1,61;69的因数有1,3,23,69;素数有3,23,61;合数有69。
本题的关键是掌握找一个数的因数的方法。
13、67
【分析】由题意可知,先求出5和13的最小公倍数,然后加上2即为这筐苹果最少的个数。
【详解】5和13是互质数,所以5和13的最小公倍数是5×13=65。
65+2=67(个)
故答案为:67
此题考查最小公倍数的实际运用,把问题转化为求5和13的最小公倍数,再加2是解决问题的关键。
14、288
【分析】截成两段后,表面积增加了两个横截面的面积,用表面积增加的部分除以2求出横截面面积,用横截面面积乘长即可求出木块的体积。
【详解】36÷2×16
=18×16
=288(dm3)
故答案为:288
本题主要考查长方体的体积公式及立方体的切拼,理解增加的表面积就是两个横截面的面积是解题的关键。
三、反复比较,精心选择
15、A
【解析】【考点】从不同方向观察物体和几何体
【解答】解:根据图形的特征可知,从上面看到中层3个正方形,上层靠右一个正方形,下层靠左一个正方形,是A图.
故答案为A
【分析】先观察物体的摆放特征,然后从上面观察,判断出看到的图形有几个正方形以及每个正方形的位置即可.
16、C
【解析】如果长方体的长宽高都相等的情况下,就变成了正方体,所以说正方体是一种特殊的长方体.长方体的范围稍微大些,正方体的范围稍微小一些,并且长方体包含正方体.
17、C
【分析】可假设=1,再用减法分别计算出x、y的值,最后比较大小。
【详解】假设=1,则x=1-=;y=1-=。因为>,所以x>y。
故答案为:C。
本题巧妙使用特殊值法,假设它们的和均等于1,从而简化计算。这种思路可以应用到一些没有确定取值范围的题目中。
18、B
【解析】略
19、C
【分析】如下图所示,在正方体的上面,沿中点位置横竖各切一刀;在正方体的前面沿中点位置水平切一刀。一共切3次切成8个新的小正方体。
【详解】一个正方体至少切3次才能切成新的正方体。
故选C。
充分发挥空间想象力,也可以拿一块豆腐动手实际操作一下。
20、C
【分析】两个或两个以上立体图形(比如正方体之间、圆柱之间)拼起来,因为面数目减少,所以表面积减少,但是体积不变;据此解答。
【详解】由分析可知:4个棱长是1厘米的小正方体拼成一个长方体,表面积会减少,体积会不变。
故答案为:C
本题主要考查立体图形的切拼及表面积体积的认识,解题时要明确:只要拼合,表面积都会减少,但体积不变。
21、C
【解析】略
22、A
【解析】略
23、C
【详解】先将9盒平均分成3份,每份3盒,任选两份称重,会出现两种情况:
1、第一次称,两边的重量不一样,由于不知道那一盒是轻还是重,所以还没办法判断,所以要第二次称,要拿下任意一边的三盒换上剩下的一组,如果这两边一样重,说明不一样重的在拿下的三盒里;如果不一样重,说明不一样重的在原来剩下的三盒里;确定是哪三盒后,再用同样的方法称重这三盒,同样还需要2次,共4次.
2、第一次称,两边的重量一样,说明不一样重的在剩下的三盒里,把剩下的三盒平均分成3份,一份为1盒,第二次称,任意选两份称重,又分两种情况,
①两边质量相同时,说明剩下的1盒是不一样的;共需要称2次;
②两边质量不相同时,还需要拿下一盒再称一次,确定是哪盒.需要3次.
据此解答.
24、D
【分析】用总长度除以每天修的长度,就是需要的天数。
【详解】3÷=12(天)
故答案为:D
本题主要考查简单的工程问题,解题时注意分数带单位时表示具体的数量。
四、动脑思考,动手操作
25、
【分析】把一个长方形平均分成2份,把其中的一份涂色;再把同样的长方形平均分成8份,把其中的4份涂色。两个图中的阴影部分面积是相等的,也就是。
【详解】根据分析画图如下:
本题主要考查分数的基本性质,解题时要注意两分数的大小相同分数单位不同。
26、
【详解】略
五、应用知识,解决问题
27、4小时
【解析】略
28、5千克
【分析】27元>9元,说明超过首重,先求出超过部分的重量,再用首重1千克加上超重的部分就是物品的重量。
【详解】(27-9)÷4.5
=18÷4.5
=4(千克)
1+4=5(千克)
答:他快递的这件物品最多重5千克。
理解总价=首重价格+超重价格是解决此题的关键。
29、11.1%
【详解】25÷(250﹣25)
=25÷225
≈11.1%
答:增产11.1%.
30、(1)、(2)
(3)1.36平方分米
(4)16个,448平方厘米
【详解】(1)、(2)考查观察物体与图形的平移与旋转.
(3)这个组合体的表面积=小正方体一个面的面积×面的个数
从上下方向共有2×6=12个面,左右方向共有2×5=10个面,前后方向共有2×6=12个面
即2×2×(12+10+12)=136(平方厘米)=1.36(平方分米)
(4)根据这个组合体的特点可知,要组成的大的正方体的棱长是4×2=8(cm)
方法一:大正方体一共有4×4×4=64个小正方体,现在有8个小正方体,需添加64-8=56个小正方体,则添加的小正方体的体积为56×2×2×2=448(平方厘米)
方法二:将原组合体从下向上,在水平方向分为①-④层,在大正方体中,每一层均有4×4=16个小正方体
第①层有6个小正方体,还需添加16-6=10个小正方体;
第②层有2个小正方体,还需添加16-2=14个小正方体;
第③层有0个小正方体,还需添加16个小正方体;
第④层有0个小正方体,还需添加16个小正方体;
即至少再添加10+14+16+16=56个小正方体
则添加的小正方体的体积为56×2×2×2=448(平方厘米)
方法三:将原组合体从左向右,在竖直方向分为①-④层,在大正方体中,每一层均有4×4=16个小正方体
第①层有3个小正方体,还需添加16-3=13个小正方体;
第②层有1个小正方体,还需添加16-1=15个小正方体;
第③层有3个小正方体,还需添加16-3=13个小正方体;
第④层有1个小正方体,还需添加16-1=15个小正方体;
即至少再添加13+15+13+15=56个小正方体
则添加的小正方体的体积为56×2×2×2=448(平方厘米)
方法四:类似的,将原组合体从前向后的方向考虑.
31、775平方厘米;1875立方厘米
【分析】求这个盒子用了多少铁皮,就是求切掉四个角之后的面积。求盒子的容积,就是求盒子的体积,要先求出盒子的长宽高,根据题意,盒子的长就是原长方形的长减去2个正方形的边长,盒子的宽就是原长方形的宽减去2个正方形的边长,盒子的高就是正方形的边长。
【详解】35×25-5×5×4
=875-100
=775(平方厘米)
(35-2×5)×(25-2×5)×5
=25×15×5
=1875(立方厘米)
答:这个盒子用了775平方厘米的铁皮,它的容积是1875立方厘米。
本题考查长方体的综合应用,确定盒子的长宽高是解答此题的关键。
32、不可以
【分析】因为披萨厚度一样,所以只要比较12寸的和两个6寸的底面积的大小即可,根据圆的公式=π,把具体数据代入计算即可。
【详解】30÷2=15(厘米)
15÷2=7.5(厘米)
3.14×15×15
=3.14×225
=706.5(平方厘米)
3.14×7.5×7.5×2
=3.14×112.5
=353.25(平方厘米)
706.5>176.625,说明12寸的比两个6寸的大很多,
答:不可以。
主要考查利用圆的面积解决实际问题,掌握圆的面积公式是解决此题的关键。
广东省深圳市龙华新区实验学校2023年五年级数学第二学期期末联考模拟试题含解析: 这是一份广东省深圳市龙华新区实验学校2023年五年级数学第二学期期末联考模拟试题含解析,共7页。试卷主要包含了仔细填空,准确判断,谨慎选择,细想快算,能写会画,解决问题等内容,欢迎下载使用。
2023年广东省深圳市龙华新区实验学校数学五年级第二学期期末调研试题含解析: 这是一份2023年广东省深圳市龙华新区实验学校数学五年级第二学期期末调研试题含解析,共7页。试卷主要包含了用心思考,我会填,仔细推敲,我会选,火眼金睛,我会判,细心审题,我能算,心灵手巧,我会画,我会解决问题等内容,欢迎下载使用。
2023届广东省深圳市龙华新区实验学校数学四下期末调研试题含解析: 这是一份2023届广东省深圳市龙华新区实验学校数学四下期末调研试题含解析,共5页。试卷主要包含了神奇小帮手,我是小法官,快乐ABC,勤奋的你来算一算,操作题,解决问题等内容,欢迎下载使用。