![2023年湖北省武汉市中考数学试卷01](http://img-preview.51jiaoxi.com/2/3/14455450/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年湖北省武汉市中考数学试卷02](http://img-preview.51jiaoxi.com/2/3/14455450/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年湖北省武汉市中考数学试卷03](http://img-preview.51jiaoxi.com/2/3/14455450/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023年湖北省武汉市中考数学试卷
展开2023年湖北省武汉市中考数学试卷
一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。
1.实数3的相反数是( )
A.3 B. C. D.﹣3
2.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )
A. B. C. D.
3.掷两枚质地均匀的骰子,下列事件是随机事件的是( )
A.点数的和为1 B.点数的和为6
C.点数的和大于12 D.点数的和小于13
4.计算(2a2)3的结果是( )
A.2a6 B.6a5 C.8a5 D.8a6
5.如图是由4个相同的小正方体组成的几何体,它的左视图是( )
A. B. C. D.
6.关于反比例函数,下列结论正确的是( )
A.图象位于第二、四象限
B.图象与坐标轴有公共点
C.图象所在的每一个象限内,y随x的增大而减小
D.图象经过点(a,a+2),则a=1
7.某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是( )
A. B. C. D.
8.已知x2﹣x﹣1=0,计算的值是( )
A.1 B.﹣1 C.2 D.﹣2
9.如图,在四边形ABCD中,AB∥CD,AD⊥AB,以D为圆心,AD为半径的弧恰好与BC相
切,切点为E,若,则sinC的值是( )
A. B. C. D.
10.皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S=N+,其中N,L分别表示这个多边形内部与边界上的格点个数,在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A(0,30),B(20,10),O(0,0),则△ABO内部的格点个数是( )
A.266 B.270 C.271 D.285
二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。
11.写出一个小于4的正无理数是 .
12.新时代十年来,我国建成世界上规模最大的社会保障体系,其中基本医疗保险的参保人数由5.4亿增加到13.6亿,参保率稳定在95%.将数据13.6亿用科学记数法表示为1.36×10n的形式,则n的值是 (备注:1亿=100000000).
13.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是 cm(结果精确到0.1cm,参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
14.我国古代数学经典著作《九章算术》记载:“今有著行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之.问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是 .
15.抛物线y=ax2+bx+c(a,b,c是常数,c<0)经过(1,1),(m,0),(n,0)三点,且n≥3.下列四个结论:
①b<0;
②4ac﹣b2<4a;
③当n=3时,若点(2,t)在该抛物线上,则t>1;
④若关于x的一元二次方程ax2+bx+c=x有两个相等的实数根,则.
其中正确的是 (填写序号).
16.如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是 .
三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形。
17.解不等式组请按下列步骤完成解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 :
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集是 .
18.如图,在四边形ABCD中,AD∥BC,∠B=∠D,点E在BA的延长线上,连接CE.
(1)求证:∠E=∠ECD;
(2)若∠E=60°,CE平分∠BCD,直接写出△BCE的形状.
19.某校为了解学生参加家务劳动的情况,随机抽取了部分学生在某个休息日做家务的劳
动时间t(单位:h)作为样本,将收集的数据整理后分为A,B,C,D,E五个组别,其中A组的数据分别为:0.5,0.4,0.4,0.4,0.3,绘制成如下不完整的统计图表.
各组劳动时间的频数分布表
组别 | 时间t/h | 频数 |
A | 0<t≤0.5 | 5 |
B | 0.5<t≤1 | a |
C | 1<t≤1.5 | 20 |
D | 1.5<t≤2 | 15 |
E | t>2 | 8 |
请根据以上信息解答下列问题.
(1)A组数据的众数是 ;
(2)本次调查的样本容量是 ,B组所在扇形的圆心角的大小是 ;
(3)若该校有1200名学生,估计该校学生劳动时间超过1h的人数.
20.如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BAC.
(1)求证:∠AOB=2∠BOC;
(2)若AB=4,,求⊙O的半径.
21.如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点.正方形ABCD四个顶点都是格点,E是AD上的格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.
(1)在图(1)中,先将线段BE绕点B顺时针旋转90°,画对应线段BF,再在CD上画点G,并连接BG,使∠GBE=45°;
(2)在图(2)中,M是BE与网格线的交点,先画点M关于BD的对称点N,再在BD上画点H,并连接MH,使∠BHM=∠MBD.
22.某课外科技活动小组研制了一种航模飞机,通过实验,收集了飞机相对于出发点的飞行水平距离x(单位:m)、飞行高度y(单位:m)随飞行时间t(单位:s)变化的数据如表.
飞行时间t/s | 0 | 2 | 4 | 6 | 8 | … |
飞行水平距离x/m | 0 | 10 | 20 | 30 | 40 | … |
飞行高度y/m | 0 | 22 | 40 | 54 | 64 | … |
探究发现 x与t,y与t之间的数量关系可以用我们已学过的函数来描述.直接写出x关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围).
问题解决 如图,活动小组在水平安全线上A处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.
(1)若发射平台相对于安全线的高度为0m,求飞机落到安全线时飞行的水平距离;
(2)在安全线上设置回收区域MN,AM=125m,MN=5m.若飞机落到MN内(不包括端点M,N),求发射平台相对于安全线的高度的变化范围.
23.问题提出 如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α (α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.
问题探究 (1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;
(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.
问题拓展 将图(1)特殊化,如图(3),当α=120°时,若,求的值.
24.抛物线交x轴于A,B两点(A在B的左边),交y轴于点C.
(1)直接写出A,B,C三点的坐标;
(2)如图(1),作直线x=t(0<t<4),分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF,若△BDE与△CEF相似,求t的值;
(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.
2022年湖北省武汉市中考数学试卷: 这是一份2022年湖北省武汉市中考数学试卷,共23页。
2022年湖北省武汉市中考数学试卷: 这是一份2022年湖北省武汉市中考数学试卷,共23页。
2023年湖北省武汉市中考数学试卷: 这是一份2023年湖北省武汉市中考数学试卷,共33页。试卷主要包含了四象限等内容,欢迎下载使用。