华7数上 第5章 5.1 相交线 PPT课件+教案
展开2.垂线
【基本目标】1.使学生理解垂线的含义与垂线的画法;
2.能理解点到直线的距离,理解垂线段的意义;
3.能在学习中了解几何在不同情况下的分类,并能在一个三角形中作出三角形的高.
【教学重点】理解点到直线的距离以及垂线段最短.
【教学重点】垂线公理及垂线段最短的应用.
一、情境导入,激发兴趣
〔投影〕如图,取两根木条a、b,将它们钉在一起,固定木条a,转动木条b.当b的位置变化时,a、 b所成的角
是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a与b相交所成的四个角分别是多少度?
总结归纳:有,当∠α=90°时,所成的四个角都是90°.
【教学说明】在转动的过程中,必须注意到变与不变,什么变,什么不变,为什么,怎么变?当有一个角是直角时,另外三个角也是直角,这个在原理上必须让学生明白.
二、合作探究,探索新知
1.垂直定义
(1)显然,两条直线相交有一个角是90°是一种特殊的情况.
(2)当两直线相交所构成的四个角中有一个为直角时,称这两直线互相垂直.两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,直线AB垂直于直线CD,记作AB⊥CD,垂足为O.
【教学说明】图形与语言的结合(转化)是几何中的一个难点,教师要进行示范.
(3)在生产和日常生活中,两条直线互相垂直的情形是很常见的,如:〔投影2〕
你能再举一些其它的例子吗?
【教学说明】举出实际生活中的实例,加深学生对垂直定义的理解.同时,也使学生了解数学知识来源于生活,又在生活中有着广泛的应用.
2.过一点画已知直线的垂线
(1)如图,已知直线AB和直线AB外一点P,过点P画出直线AB的垂线,你能画出多少条呢?
学生画图,观察后总结:只能画一条.
(2)如图,你能经过直线AB上一点P,画出垂直于直线AB的直线吗?这样的垂线能画多少条呢?
学生画图后总结:只能画一条.
【教学说明】作图的方法,可以作为一个补充知识进行讲解.在画垂线时,不一定局限于三角板或是量角器,也应懂得利用身边的东西.
(3)通过以上的操作,你有什么发现?
归纳总结:在同一平面内,过一点有且只有一条直线与已知直线垂直.
【教学说明】这是一个难点,重点强调在同一平面内.
3.垂线段
(1)演示:在黑板上固定木条l, l外一点P,木条a一端固定在点P,使之与l相交于点A.
左右摆动木条a, l与a的交点A随之变动,线段PA 的长度也随之变化,a与l的位置关系怎样时,PA最短?
小结:a与l垂直时,PA最短.这时的线段PA叫做点P到直线l的垂线段.
【教学说明】让学生观察思考后回答,教师强调垂线段和垂线的区别.
(2)〔投影3〕画出PA在摆动过程中的几个位置.如图,点A1、A2、A3….在l上,连接PA1、PA2、PA3…,PO⊥ l,垂足为O,用叠合法或度量法比较PO、PA1、PA2、PA3…的长短,可知垂线段PO最短.
小结:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.
【教学说明】学生通过比较得出结论,可以再多画一些线段进行比较.然后教师再举出一些实例加深理解.
(3)我们知道,连接两点的线段的长度叫做两点间的距离,这里我们把直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如上图,PO就是点P到直线l的距离.
【教学说明】教师强调点到直线的距离和两点间的距离一样是一个正值,是一个数量,所以不能画距离,只能量距离.
三、练习反馈,巩固提高
1.如图所示,AD⊥BD,BC⊥CD,AB=acm, BC=bcm,则BD的范围是( )
A.大于acm
B.小于bcm
C.大于acm或小于bcm
D.大于bcm且小于acm
2.到直线l的距离等于2cm的点有( )
A.0个B.1个
C.无数个D.无法确定
3.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )
A.4cm B.2cm
C.小于2cm D.不大于2cm
- 如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,
AC= 6,那么点C到AB的距离是 ,点A到BC的距离是 ,点B到CD 的距离是 ,A、B两点的距离是 .
5.已知:如图,直线AB,射线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD与OE的位置关系.
【教学说明】对于第4题距离的理解是难点,要提醒学生注意观察,第5题要注意推理的合理性和格式的规范性.
【答案】
1.D 2.C 3.D 4.4.8 6 6.4 10
5.解:OD⊥OE,∵OE平分∠AOC,∴∠COE=∠AOC.
∵OD平分∠BOC,∴∠COD=∠BOC,
∴∠DOE=∠COE+∠COD=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB=×180°=90°.
∴OD⊥OE.
四、师生互动,课堂小结
1.当两直线相交所构成的四个角中有一个为直角时,称这两直线互相垂直.两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
2.过一点有且只有一条直线与已知直线垂直.
3.连接直线外一点与直线上各点的所有线段中,垂线段最短,简单说成:
垂线段最短.
4.我们把直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
【教学说明】教师引导学生对本节课知识进行总结,加深印象,重点是对于垂线段最短的理解和应用.对出现的疑惑及时予以解答,使学生更好的掌握本节课知识.
完成本课时对应的练习.
引入新课时,教师从学生的实际出发,关注学生的生活经验和知识基础,从两根木条的转动中让学生发现它们的特殊位置,为新知识的探究学习做了较好的准备.以此来激发学生的参与兴趣,感受由垂线组成图形的规矩之美,从而产生亲近数学的情感.
新知探究部分,充分发挥学生的主体性,体现以人为本.让学生画一条直线,经过直线外一点画一条垂线,可以让学生们画出了不同方位直线在不同侧的垂线.初步体会了用作图工具三角尺画出的垂线比较规范,然后教师演示过直线上一点画已知直线的垂线的方法并同步介绍作图步骤.然后放手让学生画过直线上一点画已知直线的垂线.大家通过动口交流、动手操作、合作学习,积极主动地投入到垂线画法的探究过程中去,利于学生操作技能的形成和实践能力的培养.既发挥了学生的学习主动性,又体现了教师的指导作用,提高了学生学习的有效性.让学生经历画图——观察——总结——归纳的过程,形成知识点.对于垂线段的内容,是本节课的难点,要让学生通过比较,得出定义和性质,教师结合具体的实例加深学生的理解.