初中北师大版3 三角形的中位线授课课件ppt
展开
这是一份初中北师大版3 三角形的中位线授课课件ppt,共29页。PPT课件主要包含了课堂讲解,课时流程,温故知新,知识点,三角形中位线的性质,探究思考,观察猜想,知识小结,易错小结等内容,欢迎下载使用。
三角形中位线的性质 三角形中位线在四边形中的应用
两组对边分别平行的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
两组对角分别相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
请同学们按要求画图:画任意△ABC中,画AB、AC边中点D、E,连接DE.
定义:像DE这样,连接三角形两边中点的线段叫做三角形的中位线.
在△ABC中,中位线DE和边BC什么关系?
如图(2),延长DE到F,使FE=DE,连接CF.在△ADE和△CFE中,∵AE=CE,∠1=∠2,DE=FE,∴△ADE≌△CFE.∴∠A=∠ECF,AD=CF.
已知:如图(1),DE是△ABC的中位线.求证:DE∥BC,DE= BC.
∴CF∥AB.∵BD=AD,∴CF=BD.∴四边形DBCF是平行四边形(一组对边平行且相等的四边形是平行四边形).∴ DF∥BC(平行四边形的定义),DF=BC(平行四边形的对边相等).∴DE∥BC,DE= BC.
利用三角形中位线定理可以证明小明分割的四个小三角形全等.
如图,已知E为平行四边形ABCD中DC边延长线上一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF.求证:AB=2OF.
点O是平行四边形两条对角线的交点,所以点O是线段AC的中点,要证明AB=2OF,我们只需证明点F是线段BC的中点,即证明OF是△ABC的中位线.
∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD.∵E为平行四边形ABCD中DC边延长线上一点,且CE=DC,∴AB∥CE,AB=CE.∴四边形ABEC是平行四边形.∴点F是BC的中点.又∵点O是AC的中点,∴OF是△ABC的中位线.∴AB=2OF.
证明线段倍分关系的方法: 由于三角形的中位线等于三角形第三边的一半,因此当需要证明某一线段是另一线段的一半或两倍,且题中出现中点时,常考虑三角形中位线定理.
已知三角形的各边长分别为8 cm,10 cm和12 cm,求以各边中点为顶点的三角形的周长.
以各边中点为顶点的三角形的周长为 (8+10+12)=15(cm).
如图,A,B两地被池塘隔开,小明通过下面的方法估测出了A,B间的距离:先在AB外选一点C,然后步测出AC,BC的中点M,N,并步测出MN的长,由此他就知道了A,B间的距离. 你能说说其中的道理吗?
由题意可知,MN是△ABC的中位线,所以AB=2MN.所以测出MN的长,就可知道A,B间的距离.
【中考·宜昌】如图,要测定被池塘隔开的A,B两点的距离,可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED. 现测得AC=30 m,BC=40 m,DE=24 m,则AB=( )A.50 m B.48 m C.45 m D.35 m
【中考·梧州】如图,在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC的中点,连接DF,FE,则四边形DBEF的周长是( )A.5 B.7 C.9 D.11
【中考·遵义】如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是( )A.4.5 B.5 C.5.5 D.6
【中考·营口】如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是( )A.∠ECD=112.5° B.DE平分∠FDCC.∠DEC=30° D.AB= CD
三角形中位线在四边形中的应用
议一议如图,任意画一个四边形,以四边的中点为顶点组成一个新四边形,这个新四边形的形状有什么特征?请证明你的结论,并与同伴交流.
中点四边形的定义:依次连接任意四边形各边中点所得到的四边形称为中点四边形.拓展:不管四边形的形状怎样改变,中点四边形始终是平行四边形.
如图,在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,连接EF,FG,GH,HE,得到四边形EFGH,求证:四边形EFGH是平行四边形.
如图,连接BD.∵点E,H分别是边AB,DA的中点,∴EH为△ABD的中位线.∴EH∥BD,EH= BD.同理可得:FG∥BD,FG= BD.∴EH∥FG,EH=FG.∴四边形EFGH是平行四边形.
此题主要考查了平行四边形的判定及三角形中位线定理等知识,熟练掌握三角形中位线定理是解题的关键.
如图,已知E,F,G,H分别为四边形ABCD各边的中点,若AC=10 cm,BD=12 cm,则四边形EFGH的周长为( )A.10 cm B.11 cm C.12 cm D.22 cm
如图,已知长方形ABCD中,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当P在BC上从B向C移动而R不动时,下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长先增大后减小
【中考·怀化】如图,在▱ABCD中,对角线AC,BD相交于点O,点E是AB的中点,OE=5 cm,则AD的长为______cm.
【中考·广州】如图,四边形ABCD中,∠A=90°,AB=3 ,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为________.
三角形的中位线平行于三角形的第三边,且等于第三边的一半.几何语言(如图):∵DE是△ABC的中位线,∴DE∥BC.DE= BC.
如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24 cm,△OAB的周长是18 cm,则EF=________cm.
易错点:忽视整体思想的应用而求不出中位线的长
相关课件
这是一份数学八年级下册3 三角形的中位线教学演示课件ppt,共19页。PPT课件主要包含了三角形中位线定理,教学目标,重难点,导入新课,学习新知,两层含义,中位线,探究新知,答三条,归纳新知等内容,欢迎下载使用。
这是一份初中数学北师大版八年级下册3 三角形的中位线课前预习ppt课件,共31页。PPT课件主要包含了学习目标,导入新课,情境引入,讲授新课,合作探究,四个全等的三角形,两层含义,中位线,动画演示,DE和边BC的关系等内容,欢迎下载使用。
这是一份北师大版八年级下册3 三角形的中位线课文课件ppt,共18页。PPT课件主要包含了创设情境引入新课,DE∥BC,师生互动探究新知,学以致用巩固新知,学生练习巩固新知,小结回顾反思提高,布置作业巩固所学等内容,欢迎下载使用。