2023年广东省深圳市宝安区福民学校中考一模数学试卷(含答案)
展开
这是一份2023年广东省深圳市宝安区福民学校中考一模数学试卷(含答案),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年广东省深圳市宝安区福民学校中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.比-1小2的数是( )A.3 B.1 C.-2 D.-32.学校开展“书香校园,师生共读”活动,某学习小组五名同学一周的课外阅读时间(单位:),分别为:4,5,5,6,10.这组数据的平均数、方差是( )A.6,4.4 B.5,6 C.6,4.2 D.6,53.把下列图标折成一个正方体的盒子,折好后与“中”相对的字是( ) A.祝 B.你 C.顺 D.利4.用配方法解方程时,配方结果正确的是( )A. B. C. D.5.如图,是的角平分线,过点作交延长线于点,若,,则的度数为( )A.100° B.110° C.125° D.135°6.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为( )A. B.C. D.7.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=( )A.50m B.48m C.45m D.35m8.已知在中,,.点为边上的动点,点为边上的动点,则线段的最小值是( )A. B. C. D.9.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为( )A.2017 B.2016 C.191 D.19010.如图,已知菱形的边长为2,对角线相交于点O,点M,N分别是边上的动点,,连接.以下四个结论正确的是( )①是等边三角形;②的最小值是;③当最小时;④当时,.A.①②③ B.①②④ C.①③④ D.①②③④ 二、填空题11.如图,已知,,则_____.12.全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为________米(参考数据:tan78°12′≈4.8).13.如图,已知在和中,,,点、、、在同一条直线上,若使,则还需添加的一个条件是_______(只填一个即可).14.如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为_____.15.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0;②a@(b+c)=a@b+a@c;③不存在实数a,b,满足a@b=a2+5b2;④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是_____. 三、解答题16.(1)计算:;(2)已知m是小于0的常数,解关于x的不等式组:.17.如图是由边长为1的小正方形构成的的网格,点A,B均在格点上.(1)在图1中画出以为边且周长为无理数的,且点C和点D均在格点上(画出一个即可).(2)在图2中画出以为对角线的正方形,且点E和点F均在格点上.18.某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为多少人,其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.19.如图,一次函数的图象与轴的正半轴交于点,与反比例函数的图像交于两点.以为边作正方形,点落在轴的负半轴上,已知的面积与的面积之比为.(1)求一次函数的表达式:(2)求点的坐标及外接圆半径的长.20.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC交BC于点E,O为AC上一点,经过点A、E的⊙O分别交AB、AC于点D、F,连接OD交AE于点M.(1)求证:BC是⊙O的切线.(2)若CF=2,sinC=,求AE的长.21.2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面,某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空.该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数)经过连续15天的销售统计,得到第x天(,且x为正整数)的供应量(单位:个)和需求量(单位:个)的部分数据如下表,其中需求量与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)第x天12…6…11…15供应量(个)150………需求量(个)220229…245…220…164(1)直接写出与x和与x的函数关系式;(不要求写出x的取值范围)(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)(3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.22.抛物线过A(2,3),B(4,3),C(6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足,求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与△ABF相似,若存在,求P、Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.
参考答案:1.D2.A3.C4.A5.B6.A7.B8.B9.D10.D11.105°12.5813.14. 15.①②④.16.(1);(2)x>4-6m17.(1)见解析;(2)见解析18.(1)50,18;(2)选择的市民均来自甲区的概率为.19.(1);(2)点的坐标为;外接圆半径的长为20.(1)见解析(2) 21.(1),(2)m的值为20或21(3)第4天的销售额为21000元,第12天的销售额为20900元 22.(1);(2)D(,);(3)P(2,﹣2),Q(﹣3,0),S△BPQ=或P(2,2),Q(3,0),S△BPQ=或P(2,﹣5),Q(﹣1,0),S△BPQ=17或P(2,﹣1),Q(5,0),S△BPQ=5.
相关试卷
这是一份精品解析:2023年广东省深圳市宝安区福民学校中考一模数学试卷,文件包含精品解析2023年广东省深圳市宝安区福民学校中考一模数学试卷原卷版docx、精品解析2023年广东省深圳市宝安区福民学校中考一模数学试卷解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
这是一份2023年广东省深圳市宝安区福民学校中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023年广东省深圳市宝安区福民学校中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。