甘肃省金昌市2023届高三二模数学(理)试题(含答案)
展开甘肃省金昌市2023届高三二模数学(理)试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合,,则( )
A. B. C. D.
2.若复数满足,其中为虚数单位,则( )
A. B. C. D.
3.已知圆台的上底面半径为2,下底面半径为4,若该圆台的体积为,则其母线长为( )
A. B. C.4 D.
4.甲、乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.7,被甲或乙解出的概率为0.94,则该题被乙独立解出的概率为( )
A.0.9 B.0.8 C.0.7 D.0.6
5.已知向量,满足,,则向量,的夹角为( )
A. B. C. D.
6.在的展开式中,的系数为( )
A.4 B.-4 C.-60 D.60
7.已知是函数的一个零点,若,则( )
A. B.
C. D.
8.某程序框图如图所示,若输出的,则判断框内的条件可以是( )
A. B. C. D.
9.设为数列的前项和,若,,则下列各选项在正确的是( )
A. B.
C. D.
10.已知双曲线的右焦点为,以为圆心,为半径的圆与双曲线的一条渐近线的两个交点为.若,则该双曲线的离心率为( )
A. B. C. D.
11.已知函数在上单调递增,且在区间上既有最大值又有最小值,则实数的取值范围是( )
A. B. C. D.
12.在底面是边长为4的正方形的四棱锥中,点在底面的射影为正方形的中心,异面直线与所成角的正切值为,则四棱锥的内切球与外接球的半径之比为( )
A. B. C. D.
二、填空题
13.曲线在点处的切线方程为______.
14.我国古代数学著作《九章算术》有如下问题,“今有金箠,长五尺.斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是“现有一根金杖,长五尺,一头粗,一头细.在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金杖由粗到细是均匀变化的,估计此金杖总重量约为_________斤.
15.若函数,又是函数的图象上的两点,且的最小值为,则的值为______.
16.已知抛物线的焦点为F,准线l交x轴于点E,过F的直线与C在第一象限的交点为A,则的最大值为______.
三、解答题
17.在中,内角的对边分别为,且.
(1)求;
(2)若,求.
18.如图,在四棱锥中,底面为矩形,平面平面,.
(1)证明:平面;
(2)若,,且,,求二面角的余弦值.
19.中学阶段是学生身体发育最重要的阶段,长时间熬夜学习严重影响学生的身体健康.某校为了解甲、乙两班学生每周自我熬夜学习的总时长(单位:小时),分别从这两个班中随机抽取5名同学进行调查,得到他们最近一周自我熬夜学习的总时长的样本数据:
甲班 8 13 28 32 39
乙班 12 25 26 28 31
如果学生平均每周自我慗夜学习的总时长超过26小时,则称为“过度熬夜”.
(1)请根据样本数据,分别估计甲、乙两班的学生平均每周自我熬夜学习时长的平均值;
(2)从甲班、乙班的样本中各随机抽取2名学生的数据,记“过度熬夜”的学生总数为,写出的分布列和数学期望.
20.已知椭圆的中心为坐标原点,对称轴为轴,轴,且过两点.
(1)求椭圆的方程;
(2)是否存在直线,使得直线与圆相切,与椭圆交于两点,且满足(为坐标原点)?若存在,请求出直线的方程,若不存在,请说明理由.
21.已知函数.
(1)若,求函数的单调区间;
(2)若存在,使成立,求实数的取值范围.
22.在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程和的普通方程;
(2)求曲线上的点到直线距离的最小值.
23.已知函数.
(1)求不等式的解集;
(2)若不等式的解集为,求证:.
参考答案:
1.A
2.C
3.A
4.B
5.A
6.C
7.B
8.C
9.D
10.D
11.B
12.C
13.
14.15
15.
16.
17.(1)
(2)
18.(1)证明见解析
(2)
19.(1)估计甲班学生每周平均熬夜时间24小时;估计乙班学生每周平均熬夜时间24.4小时
(2)分布列见解析;期望为2
20.(1)
(2)不存在,理由见解析
21.(1)单调递增区间为;单调递减区间为
(2)
22.(1)曲线的直角坐标方程为,直线的普通方程
(2)
23.(1)
(2)证明见解析
2023届甘肃省金昌市高三二模数学(文)试题及答案: 这是一份2023届甘肃省金昌市高三二模数学(文)试题及答案,文件包含甘肃省金昌市2022-2023学年高三下学期5月份第二次联考数学文答案pdf、甘肃省金昌市2022-2023学年高三下学期5月份第二次联考数学文试卷pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
2023届甘肃省金昌市高三二模数学(理)试题及答案: 这是一份2023届甘肃省金昌市高三二模数学(理)试题及答案,文件包含甘肃省金昌市2022-2023学年高三下学期5月第二次联考数学理试题pdf、甘肃省金昌市2022-2023学年高三下学期5月第二次联考数学理试题解析pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
甘肃省金昌市2023届高三二模数学(文)试题(含解析): 这是一份甘肃省金昌市2023届高三二模数学(文)试题(含解析),共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。