新高考仿真模拟卷B【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版
展开绝密★启用前
2023年普通高等学校招生全国统一考试·仿真模拟卷B
数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写
在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题)
一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)
1.集合的另一种表示法是( )
A. B. C. D.
2.在复平面内,复数,那么( )
A.1 B. C. D.
3.《三十六计》是中华民族珍贵的文化遗产之一,是一部传习久远的兵法奇书,与《孙子兵法》合称我国古代兵法谋略学的双壁.三十六计共分胜战计、敌战计、攻战计、混战计、并战计、败战计六套,每一套都包含六计,合三十六个计策,如果从这36个计策中任取2个计策,则这2个计策都来自同一套的概率为( )
A. B. C. D.
4.已知函数,则其导函数的图像大致是( )
A. B.
C. D.
5.如图为陕西博物馆收藏的国宝——唐金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯的主体部分可以近似看作是离心率为的双曲线的右支与轴及平行于轴的两条直线围成的曲边四边形ABMN绕轴旋转一周得到的几何体,若P为C右支上的一点,F为C的左焦点,则与P到C的一条渐近线的距离之和的最小值为( )
A.2 B.3 C.4 D.5
6.若直线与曲线有公共点,则实数的范围是( )
A. B. C. D.
7.在四面体中,,,则该四面体外接球的表面积为( )
A. B. C. D.
8.,不等式恒成立,则的最大值为( )
A. B. C. D.
二、多选题(本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。)
9.为了调查某地大学应届毕业生的工资情况,并绘制相应的频率分布直方图,研究人员得到数据后将他们的工资分为5组,分别为[1000,2000),[2000,3000),[3000,4000),[4000,5000),[5000,6000],其对应的频率为().已知绘制的频率分布直方图关于直线对称,则不能确定该频率分布的数据是( )
A. B.
C. D.
10.函数的部分图象如图所示,点是图象上的最高点,点是图象与轴的交点,点在轴上.若是等腰直角三角形,则下列结论正确的是( )
A.
B.在区间上单调递增
C.的图象关于点对称
D.在区间上有个极值点
11.形如的函数,因其图象类似于汉字“囧”,故被称为“囧函数”,则下列说法中正确的选项为( )
A.
B.函数的图象关于直线对称
C.当时,
D.方程有四个不同的根
12.如图,棱长为2的正方体的内切球球心为,分别是棱的中点,在棱上移动,则( )
A.对于任意点,平面
B.存在点,使平面
C.直线的被球截得的弦长为
D.过直线的平面截球所得截面圆面积的最小值为
第II卷(非选择题)
三、填空题(本题共4小题,每小题5分,共20分,其中16题第一空2分,第二空3分)
13.已知向量,,且,则______.
14.设为数列的前项和,满足,,其中,数列的前项和为,则___________.
15.已知函数,,若函数恰有2个零点,则实数m的取值范围为_________.
16.如图,在直三棱柱中,点为棱上的点.且平面,则________.已知,,以为球心,以为半径的球面与侧面的交线长度为________.
四、解答题(本题共6小题,共70分,其中第16题10分。解答应写出文字说明、证明过程或演算步骤。)
17.的内角的对边分别为,已知.
(1)求角C;
(2)若,求的面积.
18.设各项均为正数的数列的前n项和为,满足对任意,都有.
(1)求证:数列为等差数列;
(2)若,求数列的前n项和.
19.如图1所示,四边形为梯形且 ,,为中点,,,现将平面沿折起,沿折起,使平面平面,且重合为点(如图2所示).
(1)证明:平面平面;
(2)求二面角的余弦值.
20.中国象棋是中国棋文化,也是中华民族的瑰宝,中国象棋使用方形格状棋盘,圆形棋子共有32个,红黑各有16个棋子,摆动和活动在交叉点上.双方交替行棋,先把对方的将(帅)将死的一方获胜,为丰富学生课余生活,现某中学举办象棋比赛,经过3轮的筛选,最后剩下甲乙丙三人进行最终决赛.甲、乙两选手进行象棋比赛,如果每局比赛甲获胜的概率为,乙获胜的概率为,丙与甲,乙比赛获胜的概率都为
(1)如果甲与乙采用5局3胜制比赛(其中一人胜3局即结束比赛),那么甲胜乙的概率是多少;
(2)若第一轮甲与乙比赛,丙轮空;第二轮由丙与第一轮的胜者比赛,败者轮空;第三轮由第二轮比赛的胜者与第二轮比赛的轮空者比赛,如此继续下去(每轮都只比赛一局),先胜两局者获得冠军,每场比赛相互独立且每场比赛没有平局,求乙获得冠军的概率.
21.在直角坐标系中,已知中心在原点,离心率为的椭圆的一个焦点为圆: 的圆心.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上一点,过作两条斜率之积为的直线, ,当直线, 都与圆相切时,求的坐标.
22.已知函数,为的导数.
(1)证明:在区间上存在唯一的极大值点;
(2)讨论零点的个数.
新高考仿真模拟试卷B【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原试卷版: 这是一份新高考仿真模拟试卷B【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原试卷版,共7页。
新高考仿真模拟试卷B【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)解析版: 这是一份新高考仿真模拟试卷B【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)解析版,共21页。
新高考仿真模拟试卷A【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原试卷版: 这是一份新高考仿真模拟试卷A【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原试卷版,共7页。