新高考仿真模拟卷A【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版
展开绝密★启用前
2023年普通高等学校招生全国统一考试˙仿真模拟卷A
数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写
在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题)
一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)
1.已知集合,,则( )
A. B. C. D.
2.已知,其中是实数,是虚数单位,则
A. B. C. D.
3.马林•梅森(MarinMersenne,1588-1648)是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物.梅森在欧几里得、费马等人研究的基础上对作了大量的计算、验证工作.人们为纪念梅森在数论方面的这一贡献,将形如(其中p是素数)的素数,称为梅森素数(素数也称质数).在不超过30的素数中,随机选取3个不同的数,至少有一个为梅森素数的概率是( )
A. B. C. D.
4.已知,则( )
A. B. C. D.
5.我国于2021年5月成功研制出目前国际上超导量子比特数量最多的量子计算原型机“祖冲之号”,操控的超导量子比特为62个.已知1个超导量子比特共有“,”2种叠加态,2个超导量子比特共有“,,,”4种叠加态,3个超导量子比特共有“,,,,,,,”8种叠加态,…,只要增加1个超导量子比特,其叠加态的种数就呈指数级增长.设62个超导量子比特共有种叠加态,则是一个( )位的数.(参考数据:)
A.18 B.19 C.62 D.63
6.为双曲线的两个焦点,点P在双曲线上,且,则的面积是( )
A.2 B.4 C.8 D.16
7.棱长为的正方体内有一个棱长为的正四面体,且该正四面体可以在正方体内任意转动,则的最大值为( )
A. B. C. D.
8.若关于x的方程存在三个不等实根,则实数a的取值范围是
A. B. C. D.
二、多选题(本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。)
9.有甲、乙两组数据,甲:1,2,a,b,10,其中a,;乙:1,2,5,6,11.已知甲组数据的平均数等于乙组数据的中位数,要使甲组数据的方差小于乙组数据的方差,则可以为( )
A.(3,9) B.(7,5) C.(2,10) D.(8,4)
10.截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图所示,将棱长为的正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为的截角四面体,则下列说法正确的是( )
A.该截角四面体的表面积为
B.该截角四面体的体积为
C.该截角四面体的外接球表面积为
D.该截角四面体中,二面角的余弦值为
11.设是定义域为的奇函数,且的图象关于直线对称,若时,,则( )
A.为偶函数
B.在上单调递减
C.在区间上有4046个零点
D.
12.已知数列,,且满足,,则( )
A. B.的最大值为
C. D.
第II卷(非选择题)
三、填空题(本题共4小题,每小题5分,共20分,其中16题第一空2分,第二空3分)
13.曲线在点处的切线方程为______.
14.在代数式的展开式中,四次项的系数是___________.(用数字作答)
15.已知,点D满足,点E为线段CD上异于C,D的动点,若,则的取值范围是_________.
16.已知椭圆的长轴长为,离心率为,为上的两个动点,且直线与斜率之积为(为坐标原点),则椭圆的短轴长为_______,_________.
四、解答题(本题共6小题,共70分,其中第16题10分。解答应写出文字说明、证明过程或演算步骤。)
17.如图,已知四边形中,
(1)求BD长度的最大值;
(2)若面积是面积的6倍,求.
18.从条件①;②;③中任选一个,补充在下面问题中,并给出解答.
已知数列的前项和为,,_____________.
(1)求的通项公式;
(2)表示不超过的最大整数,记,求的前项和.
19.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净.假设1千克该蔬菜用清水千克清洗后,蔬菜上残留的农药为微克,通过样本数据得到关于的散点图.由数据分析可用函数拟合与的关系.
(1)求与的回归方程(精确到0.1);
(2)已知对于残留在蔬菜上的农药,当它的残留量不超过20微克时对人体无害.为了放心食用该蔬菜,请估计至少需要用多少克的清水清洗1千克蔬菜?(答案精确到0.1)
附:①参考数据:,,(其中),.
②参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
20.在多面体中,已知,,,.
(1)证明:平面平面;
(2)求直线与平面所成角的正弦值.
21.已知函数.
(1)讨论函数的单调性;
(2)当时,设函数的两个零点为,,试证明:.
22.点F是抛物线的焦点,O为坐标原点,过点F作垂直于x轴的直线l,与抛物线相交于A,B两点,,抛物线的准线与x轴交于点K.
(1)求抛物线的方程;
(2)设C、D是抛物线上异于A、B两点的两个不同的点,直线相交于点E,直线相交于点G,证明:E、G、K三点共线.
新高考仿真模拟试卷B【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原试卷版: 这是一份新高考仿真模拟试卷B【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原试卷版,共7页。
新高考仿真模拟试卷B【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)解析版: 这是一份新高考仿真模拟试卷B【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)解析版,共21页。
新高考仿真模拟试卷A【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原试卷版: 这是一份新高考仿真模拟试卷A【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原试卷版,共7页。