|课件下载
搜索
    上传资料 赚现金
    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件
    立即下载
    加入资料篮
    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件01
    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件02
    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件03
    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件04
    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件05
    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件06
    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件07
    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件08
    还剩38页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件

    展开
    这是一份(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件,共46页。PPT课件主要包含了考点一,考点二,考点三,考点四,答案D,答案B,ln2,答案A,答案C等内容,欢迎下载使用。

    考点一 函数的概念与表示——理清对应,分类先行
    考点一 函数的概念与表示——理清对应,分类先行1.函数的三要素定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题务必遵循“定义域优先”的原则.2.分段函数若函数在其定义域内,对于自变量的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.
    归纳总结1.函数定义域的求法求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.2.分段函数问题的5种常见类型及解题策略(1)求函数值:弄清自变量所在区间,然后代入对应的解析式,求“层层套”的函数值,要从最内层逐层往外计算.(2)求函数最值:分别求出每个区间上的最值,然后比较大小.(3)解不等式:根据分段函数中自变量取值范围的界定,代入相应的解析式求解,但要注意取值范围的大前提.(4)求参数:“分段处理”,采用代入法列出各区间上的方程.(5)奇偶性:利用奇函数(偶函数)的定义判断.
    考点二 函数的性质及应用——“四性”交汇贯通
    考点二 函数的性质及应用——“四性”交汇贯通1.函数图象的对称性(1)若函数y=f(x)满足f(a+x)=f(a-x),即f(x)=f(2a-x),则y=f(x)的图象关于直线x=a对称;(2)若函数y=f(x)满足f(a+x)=-f(a-x),即f(x)=-f(2a-x),则y=f(x)的图象关于点(a,0)对称.2.函数的单调性单调性是函数在其定义域上的局部性质.复合函数的单调性遵循“同增异减”的原则.
    3.函数的奇偶性(1)若f(x)是偶函数,则f(x)=________.(2)若f(x)是奇函数,0在其定义域内,则f(0)=________.(3)奇函数在关于原点对称的区间内有________的单调性,偶函数在关于原点对称的区间内有________的单调性.
    (2)[2022·山师大附中高三模拟]已知定义域为R的函数f(x)满足f(-x)+f(x)=0,且f(1-x)=f(1+x),则下列结论一定正确的是(  )A.f(x+2)=f(x)B.函数y=f(x)的图象关于点(2,0)对称C.函数y=f(x+1)是奇函数D.f(2-x)=f(x-1)
    解析:对于A选项,因为f(-x)+f(x)=0,且f(1-x)=f(1+x),则f(1-(1+x))=f(1+(1+x)),即f(x+2)=-f(x),A错;对于B选项,因为f(x+2)=-f(x),则f(x+4)=-f(x+2)=f(x),因为f(-x)+f(x)=0,则f(-(2+x))+f(2+x)=0,即f(2+x)=-f(-2-x)=-f(2-x),即f(2+x)+f(2-x)=0,故函数y=f(x)的图象关于点(2,0)对称,B对;对于C选项,因为f(1-x)=f(1+x),故函数y=f(x+1)是偶函数,C错;对于D选项,因为f(1-x)=f(1+x),则f(1+1-x)=f(1-(1-x)),即f(2-x)=f(x)≠f(x-1),D错.故选B.
    归纳总结高考常考函数四个性质的应用(1)奇偶性,具有奇偶性的函数在关于原点对称的区间上,其图象、函数值、解析式和单调性联系密切,研究问题时可以转化到部分(一般取一半)区间上,注意偶函数常用结论f(x)=f(|x|);(2)单调性,可以比较大小、求函数最值、解不等式、证明方程根的唯一性;(3)周期性,利用周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题转化到已知区间上求解;(4)对称性,常围绕图象的对称中心设置试题背景,利用图象对称中心的性质简化所求问题.
    考点三 函数的图象及应用——识图用图,数形结合
    考点三 函数的图象及应用——识图用图,数形结合 作函数图象有两种基本方法一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.
    归纳总结识图、用图的方法技巧(1)识图:①从函数的定义域判断函数图象的左右位置,从函数的值域判断函数图象的上下位置,②从函数的单调性判断函数图象的变化趋势,③从函数的奇偶性判断函数图象的对称性,④从函数的周期性判断函数图象的变化规律,⑤分析函数解析式,取特殊值排除不符合要求的图象.(2)用图:在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.
    考点四 新定义下的函数
    考点四 新定义下的函数 [交汇创新]——紧扣定义,学会翻译,知识转化,顺利获解新定义函数问题主要包括两类:(1)概念型:即基于函数概念背景的新定义问题,此类问题常以函数的三要素(定义域、对应法则、值域)作为重点,考查考生对函数概念的深入理解;(2)性质型:即基于函数性质背景的新定义问题,主要涉及函数的单调性、奇偶性、周期性、有界性、对称性等性质及有关性质的延伸,旨在考查考生灵活应用函数性质的能力.
    归纳总结本题意在考查学生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f(x)的图象恰好经过1个整点,问题便迎刃而解.
    相关课件

    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题五 解析几何 第2讲 圆锥曲线的定义、方程与性质课件: 这是一份(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题五 解析几何 第2讲 圆锥曲线的定义、方程与性质课件,共39页。PPT课件主要包含了考点一,考点二,考点三,答案B,答案C,答案A,答案AC,-p2,x1+x2+p等内容,欢迎下载使用。

    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题五 解析几何 第1讲 直线与圆课件: 这是一份(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题五 解析几何 第1讲 直线与圆课件,共33页。PPT课件主要包含了考点一,考点二,考点三,答案C,答案B,答案D,答案A等内容,欢迎下载使用。

    (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题四 统计与概率 第1讲 统计、统计案例课件: 这是一份(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题四 统计与概率 第1讲 统计、统计案例课件,共43页。PPT课件主要包含了考点一,考点二,考点三,考点四,答案B,答案C,答案A等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map