- (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题二 数列 第1讲 等差数列、等比数列课件 课件 0 次下载
- (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题二 数列 第2讲 数列的通项与求和课件 课件 0 次下载
- (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第2讲 基本初等函数、函数与方程课件 课件 0 次下载
- (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第3讲 导数的简单应用课件 课件 0 次下载
- (统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第4讲 导数的综合应用课件 课件 0 次下载
(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题六 函数与导数 第1讲 函数的图象与性质课件
展开考点一 函数的概念与表示——理清对应,分类先行
考点一 函数的概念与表示——理清对应,分类先行1.函数的三要素定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题务必遵循“定义域优先”的原则.2.分段函数若函数在其定义域内,对于自变量的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.
归纳总结1.函数定义域的求法求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.2.分段函数问题的5种常见类型及解题策略(1)求函数值:弄清自变量所在区间,然后代入对应的解析式,求“层层套”的函数值,要从最内层逐层往外计算.(2)求函数最值:分别求出每个区间上的最值,然后比较大小.(3)解不等式:根据分段函数中自变量取值范围的界定,代入相应的解析式求解,但要注意取值范围的大前提.(4)求参数:“分段处理”,采用代入法列出各区间上的方程.(5)奇偶性:利用奇函数(偶函数)的定义判断.
考点二 函数的性质及应用——“四性”交汇贯通
考点二 函数的性质及应用——“四性”交汇贯通1.函数图象的对称性(1)若函数y=f(x)满足f(a+x)=f(a-x),即f(x)=f(2a-x),则y=f(x)的图象关于直线x=a对称;(2)若函数y=f(x)满足f(a+x)=-f(a-x),即f(x)=-f(2a-x),则y=f(x)的图象关于点(a,0)对称.2.函数的单调性单调性是函数在其定义域上的局部性质.复合函数的单调性遵循“同增异减”的原则.
3.函数的奇偶性(1)若f(x)是偶函数,则f(x)=________.(2)若f(x)是奇函数,0在其定义域内,则f(0)=________.(3)奇函数在关于原点对称的区间内有________的单调性,偶函数在关于原点对称的区间内有________的单调性.
(2)[2022·山师大附中高三模拟]已知定义域为R的函数f(x)满足f(-x)+f(x)=0,且f(1-x)=f(1+x),则下列结论一定正确的是( )A.f(x+2)=f(x)B.函数y=f(x)的图象关于点(2,0)对称C.函数y=f(x+1)是奇函数D.f(2-x)=f(x-1)
解析:对于A选项,因为f(-x)+f(x)=0,且f(1-x)=f(1+x),则f(1-(1+x))=f(1+(1+x)),即f(x+2)=-f(x),A错;对于B选项,因为f(x+2)=-f(x),则f(x+4)=-f(x+2)=f(x),因为f(-x)+f(x)=0,则f(-(2+x))+f(2+x)=0,即f(2+x)=-f(-2-x)=-f(2-x),即f(2+x)+f(2-x)=0,故函数y=f(x)的图象关于点(2,0)对称,B对;对于C选项,因为f(1-x)=f(1+x),故函数y=f(x+1)是偶函数,C错;对于D选项,因为f(1-x)=f(1+x),则f(1+1-x)=f(1-(1-x)),即f(2-x)=f(x)≠f(x-1),D错.故选B.
归纳总结高考常考函数四个性质的应用(1)奇偶性,具有奇偶性的函数在关于原点对称的区间上,其图象、函数值、解析式和单调性联系密切,研究问题时可以转化到部分(一般取一半)区间上,注意偶函数常用结论f(x)=f(|x|);(2)单调性,可以比较大小、求函数最值、解不等式、证明方程根的唯一性;(3)周期性,利用周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题转化到已知区间上求解;(4)对称性,常围绕图象的对称中心设置试题背景,利用图象对称中心的性质简化所求问题.
考点三 函数的图象及应用——识图用图,数形结合
考点三 函数的图象及应用——识图用图,数形结合 作函数图象有两种基本方法一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.
归纳总结识图、用图的方法技巧(1)识图:①从函数的定义域判断函数图象的左右位置,从函数的值域判断函数图象的上下位置,②从函数的单调性判断函数图象的变化趋势,③从函数的奇偶性判断函数图象的对称性,④从函数的周期性判断函数图象的变化规律,⑤分析函数解析式,取特殊值排除不符合要求的图象.(2)用图:在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.
考点四 新定义下的函数
考点四 新定义下的函数 [交汇创新]——紧扣定义,学会翻译,知识转化,顺利获解新定义函数问题主要包括两类:(1)概念型:即基于函数概念背景的新定义问题,此类问题常以函数的三要素(定义域、对应法则、值域)作为重点,考查考生对函数概念的深入理解;(2)性质型:即基于函数性质背景的新定义问题,主要涉及函数的单调性、奇偶性、周期性、有界性、对称性等性质及有关性质的延伸,旨在考查考生灵活应用函数性质的能力.
归纳总结本题意在考查学生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f(x)的图象恰好经过1个整点,问题便迎刃而解.
(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题五 解析几何 第2讲 圆锥曲线的定义、方程与性质课件: 这是一份(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题五 解析几何 第2讲 圆锥曲线的定义、方程与性质课件,共39页。PPT课件主要包含了考点一,考点二,考点三,答案B,答案C,答案A,答案AC,-p2,x1+x2+p等内容,欢迎下载使用。
(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题五 解析几何 第1讲 直线与圆课件: 这是一份(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题五 解析几何 第1讲 直线与圆课件,共33页。PPT课件主要包含了考点一,考点二,考点三,答案C,答案B,答案D,答案A等内容,欢迎下载使用。
(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题四 统计与概率 第1讲 统计、统计案例课件: 这是一份(统考版)2023高考数学二轮专题复习 第三篇 关键能力为重(研重点 保大分)专题四 统计与概率 第1讲 统计、统计案例课件,共43页。PPT课件主要包含了考点一,考点二,考点三,考点四,答案B,答案C,答案A等内容,欢迎下载使用。