2023年四川省达州市中考一模数学试卷(含答案)
展开2023年四川省达州市中考数学一模试卷
一、选择题(本大题共10小题,每小题4分,满分40分)
1.(4分)﹣的倒数的绝对值是( )
A.2023 B. C.﹣2023 D.
2.(4分)下面的几何体中,主视图不是矩形的是( )
A. B. C. D.
3.(4分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为( )
A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108
4.(4分)下列运算正确的是( )
A.x2+x3=x5 B.2x2﹣x2=1 C.x2•x3=x6 D.x6÷x3=x3
5.(4分)如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是( )
A.6 B.8 C.10 D.12
6.(4分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为( )
A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或4
7.(4分)为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:
月用水量(吨)
4
5
6
9
户数
3
4
2
1
则关于这10户家庭的月用水量,下列说法错误的是( )
A.中位数是5吨 B.众数是5吨
C.极差是3吨 D.平均数是5.3吨
8.(4分)抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x﹣1)2﹣4,则b、c的值为( )
A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=2
9.(4分)如图,已知点A1、A2、…A2024在函数y=2x2位于第二象限的图象上,点B1、B2、…、B2024在函数y=2x2位于第一象限的图象上,点C1、C2、…C2024在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2、…C2023A2024B2024B2024都是正方形,则正方形C2023A2024C2024B2024的边长为( )
A.1012 B. C. D.
10.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b﹣a>c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数);
其中正确的结论有( )
A.5个 B.4个 C.3个 D.2个
二、填空题(本大题共5小题,每小题4分,满分20分,把最后答案直接填写在答题卡相应的横线上)
11.(4分)已知a2+3a=1,则代数式2a2+6a﹣1的值为 .
12.(4分)在一不透明的袋子里装有除颜色外完全相同的4个红色小球和绿色小球若干个,若从袋中随机摸出一个小球是红色的概率为,则袋子里装有 个绿色小球.
13.(4分)如图,在△ABC中,∠B=∠C=30°,底边,线段AB的垂直平分线交BC于点E,则△ACE的周长为 .
14.(4分)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为 .
15.(4分)如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是 .(把所有正确的结论的序号都填上)
三、解答题(本大题共10小题,满分90分,解答时应写出必要的文字说明、证明过程或演算步骤)
16.(8分)(1)计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.
(2)已知方程m2x2+(2m+1)x+1=0有实数根,求m的取值范围.
17.(7分)我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩分成四组,绘成了如下尚不完整的统计图表.
组别
成绩
组中值
频数
第一组
90≤x<100
95
4
第二组
80≤x<90
85
m
第三组
70≤x<80
75
n
第四组
60≤x<70
65
21
根据图表信息,回答下列问题:
(1)参加活动选拔的学生共有 人;表中m= ,n= ;
(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;
(3)将第一组中的4名学生记为A、B、C、D,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A和B的概率.
18.(7分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡.
(1)求改造前坡顶与地面的距离BE的长.
(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)
(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).
19.(10分)在如图的方格纸中(每个小方格的边长都是1个单位)有一个格点△ABC,
(1)求出△ABC的边长,并判断△ABC是否为直角三角形;
(2)画出△ABC关于点O的中心对称图形△A1B1C1;
(3)画出△ABC绕点O按顺时针方向旋转90°后得到的图形△A2B2C2;
(4)△A1B1C1可能由△A2B2C2怎样变换得到? (写出你认为正确的一种即可).
20.(8分)如图,在梯形ABCD中,AD∥BC,点E在BC上,且AB∥DE,
(1)试判断四边形ABED的形状,并说明理由;
(2)若AB=AD=DC,EC=BE,
①求∠B的度数;
②当DC=4cm时,求四边形ABED的面积.(结果精确到0.01cm2)
21.(8分)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?
22.(10分)如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判断直线PA与⊙O的位置关系,并说明理由;
(2)求证:AG2=AB•AF.
23.(8分)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数).
(1)当m=0时,求该函数的零点;
(2)证明:无论m取何值,该函数总有两个零点;
(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.
24.(12分)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,﹣2),交x轴于A、B两点,其中A(﹣1,0),直线l:x=m(m>1)与x轴交于D.
(1)求二次函数的解析式和B的坐标;
(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);
(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.
25.(12分)我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为 .
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.
2023年四川省达州市中考数学一模试卷
(参考答案与详解)
一、选择题(本大题共10小题,每小题4分,满分40分)
1.(4分)﹣的倒数的绝对值是( )
A.2023 B. C.﹣2023 D.
【解答】解:∵的倒数是﹣2023,
∴﹣的倒数的绝对值是|﹣2023|=2023.
故选:A.
2.(4分)下面的几何体中,主视图不是矩形的是( )
A. B. C. D.
【解答】解:A为圆柱体,它的主视图应该为矩形;
B为长方体,它的主视图应该为矩形;
C为圆台,它的主视图应该为梯形;
D为三棱柱,它的主视图应该为矩形.
故选:C.
3.(4分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为( )
A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108
【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,
故选:B.
4.(4分)下列运算正确的是( )
A.x2+x3=x5 B.2x2﹣x2=1 C.x2•x3=x6 D.x6÷x3=x3
【解答】解:A、x2与x3不是同类项,不能直接合并,原式计算错误,故本选项错误;
B、2x2﹣x2=x2,原式计算错误,故本选项正确;
C、x2•x3=x5,原式计算错误,故本选项错误;
D、x6÷x3=x3,原式计算正确,故本选项正确;
故选:D.
5.(4分)如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是( )
A.6 B.8 C.10 D.12
【解答】解:设三角形的三边分别是a、b、c,令a=4,b=6,
则2<c<10,12<三角形的周长<20,
故6<中点三角形周长<10.
故选:B.
6.(4分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为( )
A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或4
【解答】解:∵x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,
∴(﹣2)2+a×(﹣2)﹣a2=0,即a2+3a﹣4=0,
整理,得(a+4)(a﹣1)=0,
解得 a1=﹣4,a2=1.
即a的值是1或﹣4.
故选:A.
7.(4分)为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:
月用水量(吨)
4
5
6
9
户数
3
4
2
1
则关于这10户家庭的月用水量,下列说法错误的是( )
A.中位数是5吨 B.众数是5吨
C.极差是3吨 D.平均数是5.3吨
【解答】解:∵这10个数据是:4,4,4,5,5,5,5,6,6,9;
∴中位数是:(5+5)÷2=5吨,故A正确;
∴众数是:5吨,故B正确;
∴极差是:9﹣4=5吨,故C错误;
∴平均数是:(3×4+4×5+2×6+9)÷10=5.3吨,故D正确.
故选:C.
8.(4分)抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x﹣1)2﹣4,则b、c的值为( )
A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=2
【解答】解:函数y=(x﹣1)2﹣4的顶点坐标为(1,﹣4),
∵是向右平移2个单位,再向下平移3个单位得到,
∴1﹣2=﹣1,﹣4+3=﹣1,
∴平移前的抛物线的顶点坐标为(﹣1,﹣1),
∴平移前的抛物线为y=(x+1)2﹣1,
即y=x2+2x,
∴b=2,c=0.
故选:B.
9.(4分)如图,已知点A1、A2、…A2024在函数y=2x2位于第二象限的图象上,点B1、B2、…、B2024在函数y=2x2位于第一象限的图象上,点C1、C2、…C2024在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2、…C2023A2024B2024B2024都是正方形,则正方形C2023A2024C2024B2024的边长为( )
A.1012 B. C. D.
【解答】解:∵OA1C1B1是正方形,
∴OB1与y轴的夹角为45°,
∴OB1的解析式为y=x,
联立方程组得:,
解得 ,.
∴B点的坐标是:(,),
∴OB1===1×;
同理可得:正方形C1A2C2B2的边长C1B2=2×;
…
依此类推,正方形C2023A2024C2024B2024的边长是为2024×=1012.
故选:B.
10.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b﹣a>c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数);
其中正确的结论有( )
A.5个 B.4个 C.3个 D.2个
【解答】解:由二次函数的图象开口向下可得a<0,由抛物线与y轴交于x轴上方可得c>0,由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,
把x=1代入y=ax2+bx+c,得:y=a+b+c,由函数图象可以看出x=1时二次函数的值为正,∵对称轴为x=1,a,b异号,∴b>0,
∴abc<0;故①abc>0,此选项错误;
②∵当x=﹣1时,ax2+bx+c<0,
∴a﹣b+c<0,
∴﹣(a﹣b+c)>0,
∴b﹣a>c;故此选项正确;
③当x=2时,ax2+bx+c>0,
∴4a+2b+c>0;
④2c<3b;当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,
即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;
⑤当x=1时,y的值最大.此时,y=a+b+c,
而当x=m时,y=am2+bm+c,
所以a+b+c>am2+bm+c,
故a+b>am2+bm,即a+b>m(am+b),正确.
②③④⑤正确.
故选:B.
二、填空题(本大题共5小题,每小题4分,满分20分,把最后答案直接填写在答题卡相应的横线上)
11.(4分)已知a2+3a=1,则代数式2a2+6a﹣1的值为 1 .
【解答】解:∵a2+3a=1,
∴原式=2(a2+3a)﹣1=2﹣1=1,
故答案为:1
12.(4分)在一不透明的袋子里装有除颜色外完全相同的4个红色小球和绿色小球若干个,若从袋中随机摸出一个小球是红色的概率为,则袋子里装有 20 个绿色小球.
【解答】解:设袋子里有x个绿色小球,
根据题意得:=,
解得:x=20,
经检验x=20是原方程的解,
故答案为:20.
13.(4分)如图,在△ABC中,∠B=∠C=30°,底边,线段AB的垂直平分线交BC于点E,则△ACE的周长为 .
【解答】解:过A点作AF⊥BC,垂足为F,
∵∠B=∠C=30°,
∴AB=AC=2AF,
∵BC=,
∴BF=CF=,
∵AC2=AF2+CF2,
∴AC2=(AC)2+()2,
解得AC=2,
∴AF=1,
∵DE垂直平分AB,
∴AE=BE,
∴△ACE的周长为AE+EC+AC=BE+EC+AC=BC+AC=.
故答案为.
14.(4分)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为 .
【解答】解:连DC,如图,
∵AE=3EC,△ADE的面积为3,
∴△CDE的面积为1,
∴△ADC的面积为4,
设A点坐标为(a,b),则AB=a,OC=2AB=2a,
而点D为OB的中点,
∴BD=OD=b,
∵S梯形OBAC=S△ABD+S△ADC+S△ODC,
∴(a+2a)×b=a×b+4+×2a×b,
∴ab=,
把A(a,b)代入双曲线y=,
∴k=ab=.
故答案为:.
15.(4分)如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是 ①②③ .(把所有正确的结论的序号都填上)
【解答】解:连接OA、OD、OF、OC、DC、AD、CF,如图,
∵△ABC绕点O顺时针旋转30°得到△DEF,
∴∠AOD=∠COF=30°,
∴∠ACD=∠AOD=15°,∠FDC=∠COF=15°,
∴∠DQN=∠QCD+∠QDC=15°+15°=30°,所以①正确;
同理可得∠AMN=30°,
∵△DEF为等边三角形,
∴DE=DF,
∴弧DE=弧DF,
∴弧AE+弧AD=弧DC+弧CF,
而弧AD=弧CF,
∴弧AE=弧DC,
∴∠ADE=∠DAC,
∴ND=NA,
在△DNQ和△ANM中
,
∴△DNQ≌△ANM(AAS),所以②正确;
∵∠ACD=15°,∠FDC=15°,
∴QD=QC,
而ND=NA,
∴ND+QD+NQ=NA+QC+NQ=AC,
即△DNQ的周长等于AC的长,所以③正确;
∵△DEF为等边三角形,
∴∠NDQ=60°,
而∠DQN=30°,
∴∠DNQ=90°,
∴QD>NQ,
∵QD=QC,
∴QC>NQ,所以④错误.
故答案为①②③.
三、解答题(本大题共10小题,满分90分,解答时应写出必要的文字说明、证明过程或演算步骤)
16.(8分)(1)计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.
(2)已知方程m2x2+(2m+1)x+1=0有实数根,求m的取值范围.
【解答】解:(1)(1﹣)0+|﹣|﹣2cos45°+()﹣1
=1+﹣2×+4
=1+﹣+4
=5;
(2)当m2=0,即m=0时,方程变为x+1=0,有实数根;
当m2≠0,即m≠0时,原方程要有实数根,则Δ≥0,即Δ=(2m+1)2﹣4m2=4m+1≥0,解得m≥﹣,
则m的范围是m≥﹣且m≠0.
综上所述,m的取值范围为m≥﹣.
17.(7分)我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩分成四组,绘成了如下尚不完整的统计图表.
组别
成绩
组中值
频数
第一组
90≤x<100
95
4
第二组
80≤x<90
85
m
第三组
70≤x<80
75
n
第四组
60≤x<70
65
21
根据图表信息,回答下列问题:
(1)参加活动选拔的学生共有 50 人;表中m= 10 ,n= 15 ;
(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;
(3)将第一组中的4名学生记为A、B、C、D,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A和B的概率.
【解答】解:(1)∵第一组有4人,所占百分比为8%,
∴学生总数为:4÷8%=50;
∴n=50×30%=15,
m=50﹣4﹣15﹣21=10.
故答案为50,10,15;
(2)==74.4;
(3)将第一组中的4名学生记为A、B、C、D,现随机挑选其中两名学生代表学校参赛,所有可能的结果如下表:
A
B
C
D
A
(B,A)
(C,A)
(D,A)
B
(A,B)
(C,B)
(D,B)
C
(A,C)
(B,C)
(D,C)
D
(A,D)
(B,D)
(C,D)
由上表可知,总共有12种结果,且每种结果出现的可能性相同.恰好选中A和B的结果有2种,其概率为==.
18.(7分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡.
(1)求改造前坡顶与地面的距离BE的长.
(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)
(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).
【解答】解:(1)∵斜坡AB的坡比为i=1:,
∴BE:EA=12:5,
设BE=12x,则EA=5x,
由勾股定理得,BE2+EA2=AB2,即(12x)2+(5x)2=262,
解得,x=2,
则BE=12x=24,AE=5x=10,
答:改造前坡顶与地面的距离BE的长为24米;
(2)作FH⊥AD于H,
则tan∠FAH=,
∴AH=≈18,
∴BF=18﹣10=8,
答:BF至少是8米.
19.(10分)在如图的方格纸中(每个小方格的边长都是1个单位)有一个格点△ABC,
(1)求出△ABC的边长,并判断△ABC是否为直角三角形;
(2)画出△ABC关于点O的中心对称图形△A1B1C1;
(3)画出△ABC绕点O按顺时针方向旋转90°后得到的图形△A2B2C2;
(4)△A1B1C1可能由△A2B2C2怎样变换得到? 先将△A2B2C2绕A2点按顺时针方向旋转90°,再将所得图形向右平移6个单位即得到△A1B1C1 (写出你认为正确的一种即可).
【解答】解:(1)AB=,AC=,BC=,
∴AB2+AC2=BC2,
∴△ABC是直角三角形.
(2)、(3)所画图形如下所示:
(4)先将△A2B2C2绕A2点按顺时针方向旋转90°,再将所得图形向右平移6个单位即得到△A1B1C1(变换可以不同,只要正确即可).
故答案为:先将△A2B2C2绕A2点按顺时针方向旋转90°,再将所得图形向右平移6个单位即得到△A1B1C1.
20.(8分)如图,在梯形ABCD中,AD∥BC,点E在BC上,且AB∥DE,
(1)试判断四边形ABED的形状,并说明理由;
(2)若AB=AD=DC,EC=BE,
①求∠B的度数;
②当DC=4cm时,求四边形ABED的面积.(结果精确到0.01cm2)
【解答】解:(1)∵AD∥BC,AB∥DE,
∴四边形ABED是平行四边形;
(2)①∵四边形ABED是平行四边形,
∴AD=BE,AB=DE,
∵AB=AD=DC,EC=BE
∴DE=CD=EC,
∴△DCE是等边三角形,
∴∠C=60°,
∵四边形ABCD是等腰梯形
∴∠B=∠C=60°,
②∵DC=4cm
∴BE=EC=DC=4cm,
作DF⊥BC于点F,则,
在Rt△DCF中,根据勾股定理,得:,
∴四边形ABED的面积=.
21.(8分)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?
【解答】解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得
,
解得,
∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);
(2)W=(x﹣10)(﹣2x+60)
=﹣2x2+80x﹣600
=﹣2(x﹣20)2+200,
对称轴x=20,在对称轴的左侧W随着x的增大而增大,
∵10≤x≤18,
∴当x=18时,W最大,最大为192.
即当销售价为18元时,每天的销售利润最大,最大利润是192元.
(3)由150=﹣2x2+80x﹣600,
解得x1=15,x2=25(不合题意,舍去)
答:该经销商想要每天获得150元的销售利润,销售价应定为15元.
22.(10分)如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判断直线PA与⊙O的位置关系,并说明理由;
(2)求证:AG2=AB•AF.
【解答】(1)解:直线PA与⊙O的位置关系:直线PA与⊙O相切,理由:
连接CD,OC,如图,
∵AD为⊙O的直径,
∴∠ACD=90°,
∴∠D+∠DAC=90°.
∵∠B=∠D,∠PAC=∠B,
∴∠D=∠PAC.
∴∠PAC+∠DAC=90°,
∴∠DAP=90°,
∴OA⊥PA,
∵OA为⊙O的半径,
∴直线PA与⊙O相切;
(2)证明:连接BG,
∵AD为⊙O的直径,CG⊥AD,
∴,
∴∠ABG=∠AGC,
∵∠GAF=∠BAG,
∴△AFG∽△AGB,
∴,
∴AG2=AB•AF.
23.(8分)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数).
(1)当m=0时,求该函数的零点;
(2)证明:无论m取何值,该函数总有两个零点;
(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.
【解答】解:(1)当m=0时,该函数的零点为和;
(2)令y=0,得△=(﹣2m)2﹣4[﹣2(m+3)]=4(m+1)2+20>0
∴无论m取何值,方程x2﹣2mx﹣2(m+3)=0总有两个不相等的实数根.
即无论m取何值,该函数总有两个零点.
(3)依题意有x1+x2=2m,x1x2=﹣2(m+3)
由,
解得m=1.
∴函数的解析式为y=x2﹣2x﹣8.
令y=0,解得x1=﹣2,x2=4
∴A(﹣2,0),B(4,0)
作点B关于直线y=x﹣10的对称点B′,连接AB′,
则AB′与直线y=x﹣10的交点就是满足条件的M点.
易求得直线y=x﹣10与x轴、y轴的交点分别为C(10,0),D(0,﹣10).
连接CB′,则∠BCD=45°
∴BC=CB’=6,∠B′CD=∠BCD=45°
∴∠BCB′=90°
即B′(10,﹣6)
设直线AB′的解析式为y=kx+b,则,
解得:k=﹣,b=﹣1;
∴直线AB′的解析式为,
即AM的解析式为.
24.(12分)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,﹣2),交x轴于A、B两点,其中A(﹣1,0),直线l:x=m(m>1)与x轴交于D.
(1)求二次函数的解析式和B的坐标;
(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);
(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.
【解答】解:(1)∵抛物线y=ax2+bx+c的顶点坐标为C(0,﹣2),
∴b=0,c=﹣2;
∵y=ax2+bx+c过点A(﹣1,0),
∴0=a+0﹣2,a=2,
∴抛物线的解析式为y=2x2﹣2.
当y=0时,2x2﹣2=0,
解得x=±1,
∴点B的坐标为(1,0);
(2)设P(m,n).
∵∠PDB=∠BOC=90°,
∴当以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似时,分两种情况:
①若△OCB∽△DBP,则=,
即=,
解得n=.
由对称性可知,在x轴上方和下方均有一点满足条件,
∴此时点P坐标为(m,)或(m,),
∵点P在第一象限,
∴点P的坐标为(m,)
②若△OCB∽△DPB,则=,
即=,
解得n=2m﹣2.
由对称性可知,在x轴上方和下方均有一点满足条件,
∴此时点P坐标为(m,2m﹣2)或(m,2﹣2m),
∵P在第一象限,m>1,
∴点P的坐标为(m,2m﹣2)
综上所述,满足条件的点P的坐标为:(m,),(m,2m﹣2).
(3)
方法一:
假设在抛物线上存在第一象限内的点Q(x,2x2﹣2),使△BPQ是以P为直角顶点的等腰直角三角形.
如图,过点Q作QE⊥l于点E.
∵∠DBP+∠BPD=90°,∠QPE+∠BPD=90°,
∴∠DBP=∠QPE.
在△DBP与△EPQ中,
,
∴△DBP≌△EPQ,
∴BD=PE,DP=EQ.
分两种情况:
①当P(m,)时,
∵B(1,0),D(m,0),E(m,2x2﹣2),
∴,
解得,(均不合题意舍去);
②当P(m,2(m﹣1))时,
∵B(1,0),D(m,0),E(m,2x2﹣2),
∴,
解得,(均不合题意舍去);
综上所述,不存在满足条件的点Q.
方法二:
若在第一象限内存在点Q,
①∵B(1,0),P(m,),
点Q可视为点B绕点P顺时针旋转90°而成,
将点P平移至原点,得P′(0,0),则点B′(1﹣m,),
将点B′顺时针旋转90°,则点Q′(,m﹣1),
将点P′平移回P(m,),则点Q′平移后即为点Q,
∴Q(,),
将点Q代入抛物线得:m2﹣m=0,
∴m1=1,m2=0,
∴Q1(1,0),Q2(0,﹣)(均不合题意舍去),
②∵B(1,0),P(m,2m﹣2),
同理可得Q(2﹣m,3m﹣3),
将点Q代入抛物线得:3m﹣3=2(2﹣m)2﹣2,
∴2m2﹣11m+9=0,
∴m1=1,m2=,
∴Q1(1,0),Q2(﹣,)(均不合题意舍去)
综上所述,不存在满足条件的点Q.
25.(12分)我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为 4 .
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.
【解答】解:(1)①如图2中,
∵△ABC是等边三角形,
∴AB=BC=AC=AB′=AC′,
∵DB′=DC′,
∴AD⊥B′C′,
∵∠BAC=60°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=120°,
∴∠B′=∠C′=30°,
∴AD=AB′=BC,
故答案为.
②如图3中,
∵∠BAC=90°,∠BAC+∠B′AC′=180°,
∴∠B′AC′=∠BAC=90°,
∵AB=AB′,AC=AC′,
∴△BAC≌△B′AC′,
∴BC=B′C′,
∵B′D=DC′,
∴AD=B′C′=BC=4,
故答案为4.
(2)结论:AD=BC.
理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M
∵B′D=DC′,AD=DM,
∴四边形AC′MB′是平行四边形,
∴AC′=B′M=AC,
∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,
∴∠BAC=∠MB′A,∵AB=AB′,
∴△BAC≌△AB′M,
∴BC=AM,
∴AD=BC.
(3)存在.
理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.
连接DF交PC于O.
∵∠ADC=150°,
∴∠MDC=30°,
在Rt△DCM中,∵CD=2,∠DCM=90°,∠MDC=30°,
∴CM=2,DM=4,∠M=60°,
在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,
∴EM=BM=7,
∴DE=EM﹣DM=3,
∵AD=6,
∴AE=DE,∵BE⊥AD,
∴PA=PD,PB=PC,
在Rt△CDF中,∵CD=2,CF=6,
∴tan∠CDF=,
∴∠CDF=60°
∴∠ADF=90°=∠AEB,
∴∠CBE=∠CFD,
∵∠CBE=∠PCF,
∴∠CFD=∠PCF,
∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,
∴∠CPF=∠CDF=60°,
易证△FCP≌△CFD,
∴CD=PF,∵CD∥PF,
∴四边形CDPF是矩形,
∴∠CDP=90°,
∴∠ADP=∠ADC﹣∠CDP=60°,
∴△ADP是等边三角形,
∴∠APD=60°,∵∠BPF=∠CPF=60°,
∴∠BPC=120°,
∴∠APD+∠BPC=180°,
∴△PDC是△PAB的“旋补三角形”,
在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=,
∴PN===.
(也可利用旋补中线长=AB,求出AB即可)
2023年四川省达州市中考数学试卷(含答案解析): 这是一份2023年四川省达州市中考数学试卷(含答案解析),共24页。试卷主要包含了 −2023的倒数为, 下列计算正确的是, 下列命题中,是真命题的是等内容,欢迎下载使用。
2023年四川省达州市中考数学试卷(含答案解析): 这是一份2023年四川省达州市中考数学试卷(含答案解析),共35页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
2023年四川省达州市中考数学试卷(含答案与解析): 这是一份2023年四川省达州市中考数学试卷(含答案与解析),共29页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。