江西省南昌市2023届高三二模数学(理)试题(含答案)
展开江西省南昌市2023届高三二模数学(理)试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合,则( )
A. B. C. D.
2.已知复数z满足,则复数z在复平面内对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.已知数列,若,则( )
A.9 B.11 C.13 D.15
4.已知函数,命题,使得,命题,当时,都有,则下列命题中为真命题的是( )
A. B.
C. D.
5.已知抛物线的准线为l,点M是抛物线上一点,若圆M过点且与直线l相切,则圆M与y轴相交所得弦长是( )
A. B. C.4 D.
6.如图,A,B,C是正方体的顶点,,点P在正方体的表面上运动,若三棱锥的主视图、左视图的面积都是1,俯视图的面积为2,则的取值范围为( )
A. B.
C. D.
7.已知单位向量满足,则的夹角为( )
A. B. C. D.
8.已知,则( )
A. B.
C. D.
9.已知数列的通项公式为,保持数列中各项顺序不变,对任意的,在数列的与项之间,都插入个相同的数,组成数列,记数列的前n项的和为,则( )
A.4056 B.4096 C.8152 D.8192
10.已知正四面体的棱长为,现截去四个全等的小正四面体,得到如图的八面体,若这个八面体能放进半径为的球形容器中,则截去的小正四面体的棱长最小值为( )
A. B.
C. D.
11.已知正实数a使得函数有且只有三个不同零点,若,则下列的关系式中,正确的是( )
A. B.
C. D.
12.中国灯笼又统称为灯彩,是一种古老的汉族传统工艺品.灯笼综合了绘画、剪纸、纸扎、刺缝等工艺,与中国人的生活息息相连.灯笼成了中国人喜庆的象征.经过历代灯彩艺人的继承和发展,形成了丰富多彩的品种和高超的工艺水平,从种类上主要有宫灯、纱灯、吊灯等类型,现将红木宫灯、檀木宫灯、楠木纱灯、花梨木纱灯、恭喜发财吊灯、吉祥如意吊灯各一个随机挂成一排,则有且仅有一种类型的灯笼相邻的概率为( )
A. B.
C. D.
二、填空题
13.已知随机变量X的分布列为
X | 0 | 1 | |
P | 0.2 | 0.4 | 0.4 |
则随机变量的数学期望________.
14.已知变量x,y满足,则的最大值为________.
15.已知函数的图象关于点中心对称(e为自然对数的底数),则________.
16.足球是大众喜爱的运动,足球比赛中,传球球员的传球角度、接球球员的巧妙跑位都让观众赞不绝口.甲、乙两支球队一场比赛的某一时刻,三位球员站位如图所示,其中A,B点站的是甲队队员,C点站的是乙队队员,,这两平行线间的距离为,,点B在直线l上,且,这时,站位A点球员传球给站位B点队友(传球球员能根据队友跑位调整传球方向及控制传球力度,及时准确传到接球点),记传球方向与的夹角为,已知站位B,C两点队员跑动速度都是,现要求接球点满足下面两个条件:
①站位B点队员能至少比站位C点队员早跑到接球点;
②接球点在直线l的左侧(包括l);则的取值范围是________.
三、解答题
17.如图是函数的部分图象,已知.
(1)求;
(2)若,求.
18.如图,在四棱锥中,底面是边长为4的菱形,,,点E在线段上,,平面平面.
(1)求;
(2)求直线与平面所成角的正弦值.
19.一地质探测队为探测一矿中金属锂的分布情况,先设了1个原点,再确定了5个采样点,这5个采样点到原点距离分别为,其中,并得到了各采样点金属锂的含量,得到一组数据,经计算得到如下统计量的值:
,,,,,其中.
(1)利用相关系数判断与哪一个更适宜作为y关于x的回归模型;
(2)建立y关于x的回归方程.
参考公式:回归方程中斜率、截距的最小二乘估计公式、相关系数公式分别为,,;
参考数据:.
20.已知椭圆的焦距为,左、右顶点分别为,上顶点为B,过点的直线斜率分别为,直线与直线的交点分别为B,P.
(1)求椭圆C的方程;
(2)若直线与椭圆C的另一个交点为Q,直线与x轴的交点为R,记的面积为,的面积为,求的取值范围.
21.已知函数为的导函数.
(1)当时,求函数的极值;
(2)已知,若存在,使得成立,求证:.
22.“太极图”是关于太极思想的图示,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.在平面直角坐标系中,“太极图”是一个圆心为坐标原点,半径为的圆,其中黑、白区域分界线,为两个圆心在轴上的半圆,在太极图内,以坐标原点为极点,轴非负半轴为极轴建立极坐标系.
(1)求点的一个极坐标和分界线的极坐标方程;
(2)过原点的直线与分界线,分别交于,两点,求面积的最大值.
23.已知.
(1)在给出的直角坐标系中画出函数的图象;
(2)若在上恒成立,求的最小值.
参考答案:
1.D
2.D
3.B
4.A
5.D
6.D
7.C
8.A
9.C
10.B
11.D
12.A
13.
14.2
15./-0.5
16.
17.(1)
(2)
18.(1)
(2)
19.(1)用作为y关于x的回归模型方程更适宜,理由见解析;
(2)
20.(1)
(2)
21.(1)极大值为,无极小值.
(2)证明见解析
22.(1),:
(2)
23.(1)图象见解析
(2)3
江西省南昌市2023届高三数学(理)二模试题(Word版附解析): 这是一份江西省南昌市2023届高三数学(理)二模试题(Word版附解析),共29页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
江西省南昌市2023届高三数学(理)三模试题(Word版附解析): 这是一份江西省南昌市2023届高三数学(理)三模试题(Word版附解析),共23页。试卷主要包含了 已知集合,则, 若虚数z使得是实数,则z满足, 平面向量,若,则, 函数的图像大致为等内容,欢迎下载使用。
江西省南昌市2023届高三数学(理)三模试题(Word版附解析): 这是一份江西省南昌市2023届高三数学(理)三模试题(Word版附解析),共23页。试卷主要包含了 已知集合,则, 若虚数z使得是实数,则z满足, 平面向量,若,则, 函数的图像大致为等内容,欢迎下载使用。