|试卷下载
搜索
    上传资料 赚现金
    2023年吉林省松原市前郭县西部学区中考数学一模试卷(含答案)
    立即下载
    加入资料篮
    2023年吉林省松原市前郭县西部学区中考数学一模试卷(含答案)01
    2023年吉林省松原市前郭县西部学区中考数学一模试卷(含答案)02
    2023年吉林省松原市前郭县西部学区中考数学一模试卷(含答案)03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年吉林省松原市前郭县西部学区中考数学一模试卷(含答案)

    展开
    这是一份2023年吉林省松原市前郭县西部学区中考数学一模试卷(含答案),共31页。试卷主要包含了选择题,填空题,解答题,解答题​等内容,欢迎下载使用。

    2023年吉林省松原市前郭县西部学区中考数学一模试卷
    一、选择题(每小题2分,共12分)
    1.下列计算结果为5的是(  )
    A.﹣(+5) B.+(﹣5) C.﹣(﹣5) D.﹣|﹣5|
    2.2、5、m是某三角形三边的长,则+等于(  )
    A.2m﹣10 B.10﹣2m C.10 D.4
    3.下列四幅图片上呈现的是垃圾类型及标识图案,其中标识图案是中心对称图形的是(  )
    A. B.
    C. D.
    4.不等式3x+1<2x的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    5.将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于(  )

    A.80° B.100° C.110° D.120°
    6.如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是(  )

    A. B.
    C. D.
    二、填空题(每小题3分,共24分)
    7.分解因式:m3﹣4m=   .
    8.为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查.结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有    名.
    9.已知xy=2,x﹣3y=3,则2x3y﹣12x2y2+18xy3=   .
    10.若关于x的一元二次方程ax2﹣x﹣=0(a≠0)有两个不相等的实数根,则点P(a+1,﹣a﹣3)在第    象限.
    11.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是   .

    12.第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图所示,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为    度.(写出一个即可)

    13.已知二元一次方程组,则x﹣y的值为    .
    14.如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积是π,则半圆的半径OA的长为   .

    三、解答题(每小题5分,共20分)
    15.解不等式组请按下列步骤完成解答.
    (1)解不等式①,得    ;
    (2)解不等式②,得    ;
    (3)把不等式①和②的解集在数轴上表示出来;

    (4)原不等式组的解集是    .
    16.学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
    17.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.

    18.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.
    (1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;
    (2)你认为这个游戏对双方公平吗?请说明理由.
    四、解答题(每小题7分,共28分)​
    19.如图,已知正比例函数y1=x与反比例函数y2的图象交于A(2,2),B两点.
    (1)求y2的解析式并直接写出y1<y2时x的取值范围;
    (2)以AB为一条对角线作菱形,它的周长为4,在此菱形的四条边中任选一条,求其所在直线的解析式.

    20.如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).
    (1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.
    (2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.

    21.随着科学技术的不断进步,无人机被广泛应用到实际生活中,小刚利用无人机来测量广场B,C两点之间的距离.如图所示,小刚站在广场的B处遥控无人机,无人机在A处距离地面的高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头看无人机时,仰角为α,若小刚的身高BE=1.6m,EA=50m(点A、E、B、C在同一平面内).
    (1)求仰角α的正弦值;
    (2)求B,C两点之间的距离.(计算结果精确到1m)(参考数据:sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)

    22.某兴趣小组随机调查了某市50名教师某日行走的步数情况并进行了统计整理,绘制了如下的统计图表(不完整):
    步数/步
    频数
    频率
    0≤x<4000
    8
    a
    4000≤x<8000
    15
    0.3
    8000≤x<12000
    12
    b
    12000≤x<16000
    c
    0.2
    16000≤x<20000
    3
    0.06
    20000≤x<24000
    d
    0.04
    请根据以上信息,解答下列问题:
    (1)写出a,b,c,d的值并补全频数分布直方图;
    (2)该市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名.

    23.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.
    (1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;
    (2)何时乙骑行在甲的前面?

    24.已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.

    根据题意解答下列问题:
    (1)用含t的代数式表示AP;
    (2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;
    (3)当QP⊥BD时,求t的值;
    (4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.
    六、解答题(每小题10分,共20分)
    25.问题背景:
    一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD是△ABC的角平分线,可证=.小慧的证明思路是:如图2,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明=.
    尝试证明:
    (1)请参照小慧提供的思路,利用图2证明:=;
    应用拓展:
    (2)如图3,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.
    ①若AC=1,AB=2,求DE的长;
    ②若BC=m,∠AED=α,求DE的长(用含m,α的式子表示).


    26.已知二次函数y=﹣x2+6x﹣5.
    (1)求二次函数图象的顶点坐标;
    (2)当1≤x≤4时,函数的最大值和最小值分别为多少?
    (3)当t≤x≤t+3时,函数的最大值为m,最小值为n,若m﹣n=3,求t的值.


    参考答案
    一、选择题(每小题2分,共12分)
    1.下列计算结果为5的是(  )
    A.﹣(+5) B.+(﹣5) C.﹣(﹣5) D.﹣|﹣5|
    【分析】根据相反数判断A,B,C选项;根据绝对值判断D选项.
    解:A选项,原式=﹣5,故该选项不符合题意;
    B选项,原式=﹣5,故该选项不符合题意;
    C选项,原式=5,故该选项符合题意;
    D选项,原式=﹣5,故该选项不符合题意;
    故选:C.
    【点评】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.
    2.2、5、m是某三角形三边的长,则+等于(  )
    A.2m﹣10 B.10﹣2m C.10 D.4
    【分析】直接利用三角形三边关系得出m的取值范围,再利用二次根式的性质化简得出答案.
    解:∵2、5、m是某三角形三边的长,
    ∴5﹣2<m<5+2,
    故3<m<7,
    ∴+
    =m﹣3+7﹣m
    =4.
    故选:D.
    【点评】此题主要考查了三角形三边关系以及二次根式的化简,正确化简二次根式是解题关键.
    3.下列四幅图片上呈现的是垃圾类型及标识图案,其中标识图案是中心对称图形的是(  )
    A. B.
    C. D.
    【分析】把一个图形绕某一点旋转180°后与自身重合,那么这个图形就叫做中心对称图形.据此判断即可.
    解:A.不是中心对称图形,故本选项不合题意;
    B.不是中心对称图形,故本选项不合题意;
    C.不是中心对称图形,故本选项不合题意;
    D.是中心对称图形,故本选项符合题意.
    故选:D.
    【点评】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与自身重合.
    4.不等式3x+1<2x的解集在数轴上表示正确的是(  )
    A. B.
    C. D.
    【分析】根据解不等式的方法可以解答本题.
    解:3x+1<2x,
    移项,得:3x﹣2x<﹣1,
    合并同类项,得:x<﹣1,
    其解集在数轴上表示如下:

    故选:B.

    【点评】本题考查解一元一次不等式、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.
    5.将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于(  )

    A.80° B.100° C.110° D.120°
    【分析】根据平行线的性质和三角形的外角的性质即可得到结论.
    解:如图所示,

    ∵AB∥CD
    ∴∠ABE=∠1=50°,
    又∵∠2是△ABE的外角,
    ∴∠2=∠ABE+∠E=50°+60°=110°,
    故选:C.
    【点评】此题考查了平行线的性质和外角的性质,熟练掌握平行线的性质是解本题的关键.
    6.如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是(  )

    A. B.
    C. D.
    【分析】利用圆柱的侧面展开图是矩形,而点B是展开图的一边的中点,再利用蚂蚁爬行的最近路线为线段可以得出结论.
    解:将圆柱侧面沿AC“剪开”,侧面展开图为矩形,
    ∵圆柱的底面直径为AB,
    ∴点B是展开图的一边的中点,
    ∵蚂蚁爬行的最近路线为线段,
    ∴C选项符合题意,
    故选:C.
    【点评】本题主要考查了圆柱的侧面展开图,最短路径问题,掌握两点之间线段最短是解题的关键.
    二、填空题(每小题3分,共24分)
    7.分解因式:m3﹣4m= m(m﹣2)(m+2) .
    【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式利用平方差公式继续分解.
    解:m3﹣4m,
    =m(m2﹣4),
    =m(m﹣2)(m+2).
    【点评】本题考查提公因式法分解因式,利用平方差公式分解因式,熟记公式是解题的关键,要注意分解因式要彻底.
    8.为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查.结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有  950 名.
    【分析】用总人数乘以样本中知晓“强省会战略”的人数所占比例即可得.
    解:估计该校全体学生中知晓湖南省“强省会战略”的学生有:1000×=950(名).
    故答案为:950.
    【点评】本题主要考查样本估计总体,熟练掌握样本估计总体的思想及计算方法是解题的关键.
    9.已知xy=2,x﹣3y=3,则2x3y﹣12x2y2+18xy3= 36 .
    【分析】先提公因式,再利用完全平方公式分解因式,最后整体代入求值即可.
    解:原式=2xy(x2﹣6xy+9y2)
    =2xy(x﹣3y)2,
    ∵xy=2,x﹣3y=3,
    ∴原式=2×2×32
    =4×9
    =36,
    故答案为:36.
    【点评】本题考查了提公因式法与公式法的综合运用,利用因式分解将代数式化简是解题的关键.
    10.若关于x的一元二次方程ax2﹣x﹣=0(a≠0)有两个不相等的实数根,则点P(a+1,﹣a﹣3)在第  四 象限.
    【分析】由二次项系数非零及根的判别式Δ>0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,由a的取值范围可得出a+1>0,﹣a﹣3<0,进而可得出点P在第四象限,此题得解.
    解:∵关于x的一元二次方程ax2﹣x﹣=0(a≠0)有两个不相等的实数根,
    ∴,
    解得:a>﹣1且a≠0.
    ∴a+1>0,﹣a﹣3<0,
    ∴点P(a+1,﹣a﹣3)在第四象限.
    故答案为:四.
    【点评】本题考查了根的判别式、一元二次方程的定义以及点的坐标,利用二次项系数非零及根的判别式Δ>0,找出关于a的一元一次不等式组是解题的关键.
    11.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是 40° .

    【分析】过A点作AC⊥OC于C,根据直角三角形的性质可求∠OAC,再根据仰角的定义即可求解.
    解:过A点作AC⊥OC于C,
    ∵∠AOC=50°,
    ∴∠OAC=40°.
    故此时观察楼顶的仰角度数是40°.
    故答案为:40°.

    【点评】考查了解直角三角形的应用﹣仰角俯角问题,仰角是向上看的视线与水平线的夹角,关键是作出辅助线构造直角三角形求出∠OAC的度数.
    12.第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图所示,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为  60(答案不唯一) 度.(写出一个即可)

    【分析】先求出正六边形的中心角,再根据旋转变换的性质解答即可.
    解:360°÷6=60°,
    则这个图案绕着它的中心旋转60°后能够与它本身重合,
    故答案为:60(答案不唯一).
    【点评】本题考查了旋转对称图形、正多边形的性质,掌握正六边形的中心角是关键.
    13.已知二元一次方程组,则x﹣y的值为  1 .
    【分析】将第一个方程化为x=4﹣2y,并代入第二个方程中,可得2(4﹣2y)+y=5,解得y=1,将y=1代入第一个方程中,可得x=2,即可求解.
    解:解法一:由x+2y=4可得:
    x=4﹣2y,
    代入第二个方程中,可得:
    2(4﹣2y)+y=5,
    解得:y=1,
    将y=1代入第一个方程中,可得
    x+2×1=4,
    解得:x=2,
    ∴x﹣y=2﹣1=1,
    故答案为:1;
    解法二:∵,
    由②﹣①可得:
    x﹣y=1,
    故答案为:1.
    【点评】本题考查解二元一次方程组,解题的关键是熟练掌握加减消元法与代入消元法.
    14.如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积是π,则半圆的半径OA的长为 3 .

    【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,列式计算就可.
    解:连接OC、OD、CD.
    ∵点C,D为半圆的三等分点,
    ∴∠AOC=∠COD=∠BOD=60°,
    ∵OC=OD,
    ∴△COD是等边三角形,
    ∴∠OCD=60°,
    ∴∠OCD=∠AOC,
    ∴CD∥AB,
    ∵△COD和△CBD等底等高,
    ∴S△COD=S△BCD.
    ∴阴影部分的面积=S扇形COD,
    ∵阴影部分的面积是π,
    ∴=π,
    ∴r=3,
    故答案为3.

    【点评】本题考查扇形的面积,解题的关键是理解阴影部分的面积等于扇形OCD的面积.
    三、解答题(每小题5分,共20分)
    15.解不等式组请按下列步骤完成解答.
    (1)解不等式①,得  x≥﹣3 ;
    (2)解不等式②,得  x<1 ;
    (3)把不等式①和②的解集在数轴上表示出来;

    (4)原不等式组的解集是  ﹣3≤x<1 .
    【分析】分别解这两个不等式,把不等式①和②的解集在数轴上表示出来,找到解集的公共部分即可得到原不等式组的解集.
    解:(1)解不等式①,得:x≥﹣3;
    (2)解不等式②,得:x<1;
    (3)把不等式①和②的解集在数轴上表示出来为:

    (4)原不等式组的解集为:﹣3≤x<1.
    故答案为:(1)x≥﹣3;
    (2)x<1;
    (4)﹣3≤x<1.
    【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,体现了数形结合的思想,在数轴上找到解集的公共部分是解题的关键.
    16.学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
    【分析】根据题意可知:张老师骑车用的时间﹣汽车用的时间=2,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.
    解:设张老师骑车的速度为x千米/小时,则汽车的速度为3x千米/小时,
    由题意可得:﹣2=,
    解得x=15,
    经检验,x=15是原分式方程的解,
    答:张老师骑车的速度是15千米/小时.
    【点评】本题考查分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程.
    17.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.

    【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.
    【解答】证明:∵DE∥AB,
    ∴∠EDC=∠B,
    在△CDE和△ABC中,

    ∴△CDE≌△ABC(ASA),
    ∴DE=BC.
    【点评】本题主要考查了平行线的性质,全等三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.
    18.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.
    (1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;
    (2)你认为这个游戏对双方公平吗?请说明理由.
    【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.
    解:画树状图如图所示,

    (1)共有16种等可能的结果数;
    (2)这个游戏对双方公平,
    理由是:
    ∵x+y为奇数的结果数为8,x+y为偶数的结果数为8,
    ∴甲获胜的概率==,乙获胜的概率==,
    ∴甲获胜的概率=乙获胜的概率,
    ∴这个游戏对双方公平.
    【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    四、解答题(每小题7分,共28分)​
    19.如图,已知正比例函数y1=x与反比例函数y2的图象交于A(2,2),B两点.
    (1)求y2的解析式并直接写出y1<y2时x的取值范围;
    (2)以AB为一条对角线作菱形,它的周长为4,在此菱形的四条边中任选一条,求其所在直线的解析式.

    【分析】(1)运用待定系数法即可求得反比例函数解析式,求出点B的坐标,(也可以直接利用反比例函数和正比例函数图象的对称性得出点B的坐标.)观察图象即可得出x的取值范围;
    (2)过点A作AE⊥x轴于点E,过点D作DF⊥x轴于点F,可证得△AOE是等腰直角三角形,得出:∠AOE=45°,OA=AE=2,再根据菱形性质可得:AB⊥CD,OC=OD,利用勾股定理即可求得D(1,﹣1),再根据对称性可得C(﹣1,1),运用待定系数法即可求得菱形的边所在直线的解析式.
    解:(1)设反比例函数y2=,把A(2,2)代入,得:2=,
    解得:k=4,
    ∴y2=,
    由,解得:,,
    ∴B(﹣2,﹣2),
    由图象可知:当y1<y2时,x<﹣2或0<x<2;
    注明:也可以直接利用反比例函数和正比例函数图象的对称性得出点B的坐标.
    (2)过点A作AE⊥x轴于点E,过点D作DF⊥x轴于点F,
    ∵A(2,2),
    ∴AE=OE=2,
    ∴△AOE是等腰直角三角形,
    ∴∠AOE=45°,OA=AE=2,
    ∵四边形ACBD是菱形,
    ∴AB⊥CD,OC=OD,
    ∴∠DOF=90°﹣∠AOE=45°,
    ∵∠DFO=90°,
    ∴△DOF是等腰直角三角形,
    ∴DF=OF,
    ∵菱形ACBD的周长为4,
    ∴AD=,
    在Rt△AOD中,OD===,
    ∴DF=OF=1,
    ∴D(1,﹣1),
    由菱形的对称性可得:C(﹣1,1),
    设直线AD的解析式为y=mx+n,
    则,
    解得:,
    ∴AD所在直线的解析式为y=3x﹣4;
    同理可得BC所在直线的解析式为y=3x+4,AC所在直线的解析式为y=x+,BD所在直线的解析式为y=x﹣.

    【点评】本题是反比例函数综合题,考查了待定系数法求函数解析式,一次函数和反比例函数的图象和性质,等腰直角三角形的判定和性质,勾股定理,菱形的性质等,难度适中,熟练掌握待定系数法是解题关键.
    20.如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).
    (1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.
    (2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.

    【分析】(1)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可;
    (2)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可.
    解:(1)如图1中△ABC即为所求(答案不唯一);
    (2)如图2中△ABC即为所求(答案不唯一).

    【点评】本题考查作图—旋转变换、作图—平移变换,解答本题的关键是明确题意,画出相应的图形,注意不要忘记画出平移后或旋转后的图形.
    21.随着科学技术的不断进步,无人机被广泛应用到实际生活中,小刚利用无人机来测量广场B,C两点之间的距离.如图所示,小刚站在广场的B处遥控无人机,无人机在A处距离地面的高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头看无人机时,仰角为α,若小刚的身高BE=1.6m,EA=50m(点A、E、B、C在同一平面内).
    (1)求仰角α的正弦值;
    (2)求B,C两点之间的距离.(计算结果精确到1m)(参考数据:sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)

    【分析】(1)过点A作AG⊥BC于点G,过点E作EH⊥AG于点H.由题意可得∠ACG=63°,AG=41.6m,AE=50m,EB=GH=1.6m,则AH=AG﹣GH=40(m),故sinα=.
    (2)在Rt△ACG中,tan63°=≈1.96,解得CG≈21.22,在Rt△AEH中,AE=50m,AH=40m,EH==30(m),则BG=30m,根据BC=BG+CG可得出答案.
    解:(1)过点A作AG⊥BC于点G,过点E作EH⊥AG于点H.

    由题意可得∠ACG=63°,AG=41.6m,AE=50m,EB=GH=1.6m,
    ∴AH=AG﹣GH=40(m),
    ∴sinα=,
    即仰角α的正弦值为.
    (2)在Rt△ACG中,∠ACG=63°,AG=41.6m,
    tan63°=≈1.96,
    解得CG≈21.22,
    在Rt△AEH中,AE=50m,AH=40m,
    ∴EH==30(m),
    ∴BG=30m,
    ∴BC=BG+CG=30+21.22≈51(m).
    答:B,C两点之间的距离约为51m.
    【点评】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键.
    22.某兴趣小组随机调查了某市50名教师某日行走的步数情况并进行了统计整理,绘制了如下的统计图表(不完整):
    步数/步
    频数
    频率
    0≤x<4000
    8
    a
    4000≤x<8000
    15
    0.3
    8000≤x<12000
    12
    b
    12000≤x<16000
    c
    0.2
    16000≤x<20000
    3
    0.06
    20000≤x<24000
    d
    0.04
    请根据以上信息,解答下列问题:
    (1)写出a,b,c,d的值并补全频数分布直方图;
    (2)该市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名.

    【分析】(1)根据频率=频数÷总数求解即可;
    (2)用总人数乘以样本中步数超过12000(包含12000)的频率和即可.
    解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,
    补全图形如下:

    (2)37800×(0.2+0.06+0.04)=11340(名),
    答:用调查的样本数据估计日行走步数超过12000(包含12000)的教师有11340名.
    【点评】考查频数分布表、频数分布直方图的意义和制作方法,掌握频数、频率、总数之间的关系是正确计算的前提.
    23.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.
    (1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;
    (2)何时乙骑行在甲的前面?

    【分析】(1)根据图象分段设出函数解析式,在用待定系数法求出函数解析式即可;
    (2)根据乙的路程大于甲的路程即可求解.
    解:(1)当0≤t≤0.2时,设s=at,
    把(0.2,3)代入解析式得,0.2a=3,
    解得:a=15,
    ∴s=15t;
    当t>0.2时,设s=kt+b,
    把(0.2,3)和(0.5,9)代入解析式,
    得,
    解得,
    ∴s=20t﹣1,
    ∴s与t之间的函数表达式为s=;
    (2)由(1)可知0≤t≤0.2时,乙骑行的速度为15km/h,而甲的速度为18km/h,则甲在乙前面;
    当t>0.2时,乙骑行的速度为20km/h,甲的速度为18km/h,
    设t小时后,乙骑行在甲的前面,
    则18t<20t﹣1,
    解得:t>0.5,
    答:0.5小时后乙骑行在甲的前面
    【点评】本题考查一次函数的应用,关键是根据图象用待定系数法分段求函数解析式.
    24.已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.

    根据题意解答下列问题:
    (1)用含t的代数式表示AP;
    (2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;
    (3)当QP⊥BD时,求t的值;
    (4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.
    【分析】(1)如图作DH⊥AB于H则四边形DHBC是矩形,利用勾股定理求出AD的长即可解决问题;
    (2)作PN⊥AB于N.连接PB,根据S=S△PQB+S△BCP,计算即可;
    (3)当PQ⊥BD时,∠PQN+∠DBA=90°,∠QPN+∠PQN=90°,推出∠QPN=∠DBA,推出tan∠QPN==,由此构建方程即可解决问题;
    (4)存在.连接BE交DH于K,作KM⊥BD于M.当BE平分∠ABD时,△KBH≌△KBM,推出KH=KM,BH=BM=8,设KH=KM=x,在Rt△DKM中,(6﹣x)2=22+x2,解得x=,作EF⊥AB于F,则△AEF≌△QPN,推出EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,推出BF=16﹣[(10﹣2t)﹣2t],由KH∥EF,可得=,由此构建方程即可解决问题;
    解:(1)如图作DH⊥AB于H,则四边形DHBC是矩形,
    ∴CD=BH=8,DH=BC=6,
    ∴AH=AB﹣BH=8,AD==10,BD==10,
    由题意AP=AD﹣DP=10﹣2t(0<t<5)

    (2)作PN⊥AB于N.连接PB.在Rt△APN中,PA=10﹣2t,
    ∴PN=PA•sin∠DAH=(10﹣2t),AN=PA•cos∠DAH=(10﹣2t),
    ∴BN=16﹣AN=16﹣(10﹣2t),
    S=S△PQB+S△BCP=•(16﹣2t)•(10﹣2t)+×6×[16﹣(10﹣2t)]=t2﹣t+72(0<t<5)

    (3)当PQ⊥BD时,∠PQN+∠DBA=90°,
    ∵∠QPN+∠PQN=90°,
    ∴∠QPN=∠DBA,
    ∴tan∠QPN==,
    ∴=,
    解得t=,
    经检验:t=是分式方程的解,
    ∴当t=s时,PQ⊥BD.

    (4)存在.
    理由:连接BE交DH于K,作KM⊥BD于M.
    当BE平分∠ABD时,△KBH≌△KBM,
    ∴KH=KM,BH=BM=8,设KH=KM=x,
    在Rt△DKM中,(6﹣x)2=22+x2,
    解得x=,
    作EF⊥AB于F,则△AEF≌△QPN,
    ∴EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,
    ∴BF=16﹣[(10﹣2t)﹣2t],
    ∵KH∥EF,
    ∴=,
    ∴=,
    解得:t=,
    经检验:t=是分式方程的解,
    ∴当t=s时,点E在∠ABD的平分线.

    【点评】本题考查四边形综合题,解直角三角形、锐角三角函数、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形或全等三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.
    六、解答题(每小题10分,共20分)
    25.问题背景:
    一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD是△ABC的角平分线,可证=.小慧的证明思路是:如图2,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明=.
    尝试证明:
    (1)请参照小慧提供的思路,利用图2证明:=;
    应用拓展:
    (2)如图3,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.
    ①若AC=1,AB=2,求DE的长;
    ②若BC=m,∠AED=α,求DE的长(用含m,α的式子表示).


    【分析】(1)证明△CED∽△BAD,由相似三角形的性质得出,证出CE=CA,则可得出结论;
    (2)①由折叠的性质可得出∠CAD=∠BAD,CD=DE,由(1)可知,,由勾股定理求出BC=,则可求出答案;
    ②由折叠的性质得出∠C=∠AED=α,则tan∠C=tanα=,方法同①可求出CD=,则可得出答案.
    【解答】(1)证明:∵CE∥AB,
    ∴∠E=∠EAB,∠B=∠ECB,
    ∴△CED∽△BAD,
    ∴,
    ∵∠E=∠EAB,∠EAB=∠CAD,
    ∴∠E=∠CAD,
    ∴CE=CA,
    ∴.
    (2)解:①∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,
    ∴∠CAD=∠BAD,CD=DE,
    由(1)可知,,
    又∵AC=1,AB=2,
    ∴,
    ∴BD=2CD,
    ∵∠BAC=90°,
    ∴BC===,
    ∴BD+CD=,
    ∴3CD=,
    ∴CD=;
    ∴DE=;
    ②∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,
    ∴∠CAD=∠BAD,CD=DE,∠C=∠AED=α,
    ∴tan∠C=tanα=,
    由(1)可知,,
    ∴tanα=,
    ∴BD=CD•tanα,
    又∵BC=BD+CD=m,
    ∴CD•tanα+CD=m,
    ∴CD=,
    ∴DE=.
    【点评】本题是相似形综合题,考查了折叠的性质,角平分线的定义,等腰三角形的判定与性质,平行线的性质,相似三角形的判定与性质,勾股定理,锐角三角函数的定义,熟练掌握相似三角形的判定与性质是解题的关键.
    26.已知二次函数y=﹣x2+6x﹣5.
    (1)求二次函数图象的顶点坐标;
    (2)当1≤x≤4时,函数的最大值和最小值分别为多少?
    (3)当t≤x≤t+3时,函数的最大值为m,最小值为n,若m﹣n=3,求t的值.
    【分析】(1)解析式化成顶点式即可求得;
    (2)根据二次函数图象上点的坐标特征即可求得最大值和最小值;
    (3)分三种情况讨论,根据二次函数的性质得到最大值m和最小值n,进而根据m﹣n=3得到关于t的方程,解方程即可.
    解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,
    ∴顶点坐标为(3,4);
    (2)∵a=﹣1<0,
    ∴抛物线开口向下,
    ∵顶点坐标为(3,4),
    ∴当x=3时,y最大值=4,
    ∵当1≤x≤3时,y随着x的增大而增大,
    ∴当x=1时,y最小值=0,
    ∵当3<x≤4时,y随着x的增大而减小,
    ∴当x=4时,y最小值=3.
    ∴当1≤x≤4时,函数的最大值为4,最小值为0;
    (3)当t≤x≤t+3时,对t进行分类讨论,
    ①当t+3<3时,即t<0,y随着x的增大而增大,
    当x=t+3时,m=﹣(t+3)2+6(t+3)﹣5=﹣t2+4,
    当x=t时,n=﹣t2+6t﹣5,
    ∴m﹣n=﹣t2+4﹣(﹣t2+6t﹣5)=﹣6t+9,
    ∴﹣6t+9=3,解得t=1(不合题意,舍去),
    ②当0≤t<3时,顶点的横坐标在取值范围内,
    ∴m=4,
    i)当0≤t≤时,在x=t时,n=﹣t2+6t﹣5,
    ∴m﹣n=4﹣(﹣t2+6t﹣5)=t2﹣6t+9,
    ∴t2﹣6t+9=3,解得t1=3﹣,t2=3+(不合题意,舍去);
    ii)当<t<3时,在x=t+3时,n=﹣t2+4,
    ∴m﹣n=4﹣(﹣t2+4)=t2,
    ∴t2=3,解得t1=,t2=﹣(不合题意,舍去),
    ③当t≥3时,y随着x的增大而减小,
    当x=t时,m=﹣t2+6t﹣5,
    当x=t+3时,n=﹣(t+3)2+6(t+3)﹣5=﹣t2+4,
    .m﹣n=﹣t2+6t﹣5﹣(﹣t2+4)=6t﹣9,
    ∴6t﹣9=3,解得t=2(不合题意,舍去),
    综上所述,t=3﹣或.
    【点评】本题考查了二次函数的性质,二次函数的最值,分类讨论是解题的关键.


    相关试卷

    2023年吉林省松原市前郭县学区中考数学二模试卷(含解析): 这是一份2023年吉林省松原市前郭县学区中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年吉林省松原市前郭县南部学区中考数学三模试卷(含解析): 这是一份2023年吉林省松原市前郭县南部学区中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年吉林省松原市前郭县学区中考数学二模试卷(含解析): 这是一份2023年吉林省松原市前郭县学区中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map