专题01 应用大全压轴真题训练-挑战2023年中考数学压轴真题汇编(全国通用)
展开专题01 应用大全压轴真题训练
一.一元一次方程的应用
1.(2022•南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)
种类 | 真丝衬衣 | 真丝围巾 |
进价(元/件) | a | 80 |
售价(元/件) | 300 | 100 |
(1)求真丝衬衣进价a的值.
(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?
(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?
二.二元一次方程组的应用(共1小题)
2.(2022•广元)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.
(1)科技类图书与文学类图书的单价分别为多少元?
(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?
三.分式方程的应用(共1小题)
3.(2022•锦州)2022年3月23日“天宫课堂”第二课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A、B两款物理实验套装,其中A款套装单价是B款套装单价的1.2倍,用9900元购买的A款套装数量比用7500元购买的B款套装数量多5套.求A、B两款套装的单价分别是多少元.
4.(2022•益阳)在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.
(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?
(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?
5.(2022•河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.
(1)求菜苗基地每捆A种菜苗的价格.
(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.
四.一次函数的应用(共1小题)
6.(2022•湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.
(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?
(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;
(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.
7.(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.
(1)求购进A、B两种纪念品的单价;
(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.
8.(2022•东营)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.
(1)求甲、乙两种水果的进价分别是多少?
(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?
9.(2022•襄阳)为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.
(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;
(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;
(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.
五.二次函数的应用(共2小题)
10.(2022•淮安)端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B品牌粽子120袋,总费用为8100元.
(1)求A、B两种品牌粽子每袋的进价各是多少元;
(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?
11.(2022•湖北)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m)与种植面积x(m)之间的函数关系如图所示,乙种花卉种植费用为15元/m.
(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;
(2)当甲种花卉种植面积不少于30m,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.
①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?
②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.
12.(2022•攀枝花)第24届冬奥会(也称2022年北京冬奥会)于2022年2月4日至2月20日在中国北京举行,北京成为了历史上第一座既举办过夏奥会又举办过冬奥会的城市.冬奥会上跳台滑雪是一项极为壮观的运动.运动员经过助滑、起跳、空中飞行和着陆,整个动作连贯一致,一气呵成,如图,某运动员穿着滑雪板,经过助滑后,从倾斜角θ=37°
的跳台A点以速度v沿水平方向跳出,若忽略空气阻力影响,水平方向速度将保持不变.同时,由于受重力作用,运动员沿竖直方向会加速下落,因此,运动员在空中飞行的路线是抛物线的一部分,已知该运动员在B点着陆,AB=150m.且sin37°=0.6.忽略空气阻力,请回答下列问题:
(1)求该运动员从跳出到着陆垂直下降了多少m?
(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;
(3)若该运动员在空中共飞行了4s,求他飞行2s后,垂直下降了多少m?
13.(2022•黄石)某校为配合疫情防控需要,每星期组织学生进行核酸抽样检测;防疫部门为了解学生错峰进入操场进行核酸检测情况,调查了某天上午学生进入操场的累计人数y(单位:人)与时间x(单位:分钟)的变化情况,发现其变化规律符合函数关系式:y=,数据如表.
时间x(分钟) | 0 | 1 | 2 | 3 | … | 8 | x>8 |
累计人数y(人) | 0 | 150 | 280 | 390 | … | 640 | 640 |
(1)求a,b,c的值;
(2)如果学生一进入操场就开始排队进行核酸检测,检测点有4个,每个检测点每分钟检测5人,求排队人数的最大值(排队人数=累计人数﹣已检测人数);
(3)在(2)的条件下,全部学生都完成核酸检测需要多少时间?如果要在不超过20分钟让全部学生完成核酸检测,从一开始就应该至少增加几个检测点?
14.(2022•宁夏)2022北京冬奥会自由式滑雪空中技巧比赛中,某运动员比赛过程的空中剪影近似看作一条抛物线,跳台高度OA为4米,以起跳点正下方跳台底端O为原点,水平方向为横轴,竖直方向为纵轴,建立如图所示平面直角坐标系.已知抛物线最高点B的坐标为(4,12),着陆坡顶端C与落地点D的距离为2.5米,若斜坡CD的坡度i=3:4(即=).
求:(1)点A的坐标;
(2)该抛物线的函数表达式;
(3)起跳点A与着陆坡顶端C之间的水平距离OC的长.(精确到0.1米)
(参考数据:≈1.73)
15.(2022•衢州)如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度v(m/s)从D点滑出,运动轨迹近似抛物线y=﹣ax+2x+20(a≠0).某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.
(1)求线段CE的函数表达式(写出x的取值范围).
(2)当a=时,着陆点为P,求P的横坐标并判断成绩是否达标.
(3)在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与v的对应数据,在平面直角坐标系中描点如图3.
①猜想a关于v的函数类型,求函数表达式,并任选一对对应值验证.
②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?(参考数据:≈1.73,≈2.24)
16.(2022•朝阳)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.
(1)求y与x之间的函数关系式.
(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?
(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?
17.(2022•温州)根据以下素材,探索完成任务.
如何设计拱桥景观灯的悬挂方案? | ||||
素材1 | 图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高. | |||
素材2 | 为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布. | |||
问题解决 | ||||
任务1 | 确定桥拱形状 | 在图2中建立合适的直角坐标系,求抛物线的函数表达式. | ||
任务2 | 探究悬挂范围 | 在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围. | ||
任务3 | 拟定设计方案 | 给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标. | ||
18.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax+bx+c(a≠0).
(1)c的值为 ;
(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;
②若a=﹣时,运动员落地点要超过K点,则b的取值范围为 ;
(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.
专题09 几何中最小值计算压轴真题训练-挑战2023年中考数学压轴真题汇编(全国通用): 这是一份专题09 几何中最小值计算压轴真题训练-挑战2023年中考数学压轴真题汇编(全国通用),文件包含专题09几何中最小值计算压轴真题训练解析版docx、专题09几何中最小值计算压轴真题训练原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
专题06 三角形综合的压轴真题训练-挑战2023年中考数学压轴真题汇编(全国通用): 这是一份专题06 三角形综合的压轴真题训练-挑战2023年中考数学压轴真题汇编(全国通用),文件包含专题06三角形综合的压轴真题训练解析版docx、专题06三角形综合的压轴真题训练原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
专题05 二次函数函数综合的压轴真题训练-挑战2023年中考数学压轴真题汇编(全国通用): 这是一份专题05 二次函数函数综合的压轴真题训练-挑战2023年中考数学压轴真题汇编(全国通用),文件包含专题05二次函数函数综合的压轴真题训练解析版docx、专题05二次函数函数综合的压轴真题训练原卷版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。