- 第九章 统计【过题型】-2022-2023学年高一数学单元复习(人教A版2019必修第二册) 试卷 1 次下载
- 第六章 平面向量及其应用(平面向量部分)【过题型】-2022-2023学年高一数学单元复习(人教A版2019必修第二册) 试卷 1 次下载
- 第六章 平面向量及其应用【过关测试】-2022-2023学年高一数学单元复习(人教A版2019必修第二册) 试卷 1 次下载
- 第六章 平面向量及其应用(正余弦定理部分)【过题型】-2022-2023学年高一数学单元复习(人教A版2019必修第二册) 试卷 1 次下载
- 第十章 概率【过题型】-2022-2023学年高一数学单元复习(人教A版2019必修第二册) 试卷 1 次下载
第十章 概率【过关测试】-2022-2023学年高一数学单元复习(人教A版2019必修第二册)
展开第九章 统计
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(2023·全国·高一专题练习)下列事件中,随机事件的个数是( )
①未来某年8月18日,北京市不下雨;
②在标准大气压下,水在4℃时结冰;
③从标有1,2,3,4的4张号签中任取一张,恰好取到1号签;
④任取,则.
A.1 B.2 C.3 D.4
2.(2023·全国·高一专题练习)盒子中装有红色,黄色和黑色小球各2个,一次取出2个小球,下列事件中,与事件“2个小球都是红色”对立的事件是( )
A.2个小球都是黑色 B.2个小球恰有1个是红色
C.2个小球都不是红色 D.2个小球至多有1个是红色
3.(2023·全国·高二专题练习)珠算是以算盘为工具进行数字计算的一种方法,2013年年底联合国教科文组织将中国珠算项目列入人类非物质文化遗产名录.算盘的每个档(挂珠的杆)上有7颗算珠,用梁隔开,梁上面的两颗珠叫“上珠”,下面的5颗叫“下珠”,从最右边两档的14颗算珠中任取1颗,则这一颗是上珠的概率为( )
A. B. C. D.
4.(2023·全国·高一专题练习)袋子中有5个质地完全相同的球,其中2个白球,3个是红球,从中不放回地依次随机摸出两个球,记第一次摸到红球”,“第二次摸到红球”,则以下说法正确的是( )
A. B.
C. D.
5.(2023秋·辽宁葫芦岛·高一统考期末)张益唐是当代著名华人数学家,他在数论研究方面取得了巨大成就,曾经在《数学年刊》发表《质数间的有界间隔》,证明了存在无穷多对质数间隙都小于7000万.2013年张益唐证明了孪生素数猜想的一个弱化形式,孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述,存在无穷多个素数p,使得是素数,素数对称为孪生素数,在不超过12的素数中,随机选取两个不同的数,能够组成孪生素数的概率是( )
A. B. C. D.
6.(2023秋·四川宜宾·高三宜宾市叙州区第一中学校校考期末)已知为整数,且,设平面向量与的夹角为,则的概率为( )
A. B. C. D.
7.(2022·全国·高三专题练习)生物的性状是由遗传因子确定的,遗传因子在体细胞内成对存在,一个来自父本,一个来自母本,且等可能随机组合.豌豆子叶的颜色是由显性因子D(表现为黄色),隐性因子d(表现为绿色)决定的,当显性因子与隐形因子结合时,表现显性因子的性状,即DD,Dd都表现为黄色;当两个隐形因子结合时,才表现隐形因子的性状,即dd表现为绿色.已知父本和母本确定子叶颜色的遗传因子都是Dd,不考虑基因突变,从子一代中随机选择两粒豌豆进行杂交,则选择的豌豆的子叶都是黄色且子二代豌豆的子叶是绿色的概率为( )
A. B. C. D.
8.(2022春·河北邯郸·高一统考期末)抛掷一枚质地均匀的硬币次,记事件“次中既有正面朝上又有反面朝上”,“次中至多有一次正面朝上”,下列说法不正确的是( )
A.当时, B.当时,事件A与事件不独立
C.当时, D.当时,事件A与事件不独立
二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)
9.(2023·全国·高三专题练习)欧洲联盟委员会和荷兰环境评估署于2015年12月公布了10个国家和地区的二氧化碳排放总量及人均二氧化碳排放量,下表是人均二氧化碳排放量(吨)的统计表.
中国 | 巴西 | 英国 | 墨西哥 | 俄罗斯 | 意大利 | 德国 | 韩国 | 加拿大 | 沙特阿拉伯 |
7.4 | 2.0 | 7.5 | 3.9 | 12.6 | 6.4 | 10.2 | 6.2 | 15.7 | 16.6 |
根据上表,下列结论正确的是( )
A.这10个国家和地区人均二氧化碳排放量的极差为14.6吨
B.这10个国家和地区人均二氧化碳排放量的中位数为7.45吨
C.这10个国家和地区人均二氧化碳排放量30%分位数是6.2吨
D.在人均二氧化碳排放量超过10吨的国家和地区中,随机抽取两个进行访谈,其中俄罗斯被抽到的概率为
10.(2023春·安徽·高一合肥市第八中学校联考开学考试)甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以表示从乙罐中取出的球是红球的事件,下列命题正确的是( )
A.事件互斥 B.事件与事件相互独立
C. D.
11.(2023秋·浙江杭州·高二统考期末)已知甲罐中有四个相同的小球,标号为1,2,3,4;乙罐中有三个相同的小球,标号为1,2,3.从甲罐、乙罐中分别随机抽取1个小球,记事件“抽取的两个小球标号之和大于5”,事件“抽取的两个小球标号之积小于6”,则( )
A.事件发生的概率为 B.事件发生的概率为
C.事件是互斥事件 D.事件相互独立
12.(2022·高一单元测试)连掷一枚均匀的骰子两次,向上的点数分别为m,n,记,则下列说法错误的是( )
A.事件“”的概率为 B.事件“是奇数”与“”互为对立事件
C.事件“”与“”为互斥事件 D.事件“且”的概率为
三、填空题(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分.)
13.(2023秋·江西吉安·高一统考期末)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球,黑色球的频率稳定在30%和40%,则口袋中白色球的个数可能是__________个.
14.(2023·全国·高三对口高考)如图,由甲、乙两人在5次综合测评中的成绩茎叶图可知,两人的成绩如下:甲:88,89,90,91,92,乙:83,83,87,9●,99,其中乙的一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是_________.
15.(2023秋·山东潍坊·高一临朐县第一中学校考期末)一个三位自然数百位,十位,个位上的数字依次为a,b,c,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若,且a,b,c互不相同,则这个三位数为”有缘数”的概率是__________.
16.(2022春·河北·高二河北省文安县第一中学校考期末)中国象棋是中国棋文化、也是中华民族的文化瑰宝,它源远流长,趣味浓厚,使用方格状棋盘,每个棋子摆放和活动在交叉点上.其中象位于A处,其移动规则为循着田字的对角线走两格,即下一步可到达的地方为B或D;同理,若象位于D处,下一次可到达的地方为A,C,E或G.已知象从某位置到达下一个位置是随机的,假设象的初始位置是在A处,则走2步后恰好回到A处的概率为___________,4步后恰好回到A处的概率为___________.
四、解答题(本题共6小题,共70分,其中第16题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)
17.(2023·全国·高三专题练习)某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)
如下表所示:
| A
| B
| C
| D
| E
|
身高
| 1.69
| 1.73
| 1.75
| 1.79
| 1.82
|
体重指标
| 19.2
| 25.1
| 18.5
| 23.3
| 20.9
|
(Ⅰ)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率
(Ⅱ)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.
18.(2023秋·四川成都·高二校考期末)在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有5个小球,小球上分别写有0,1,2,3,4的数字,小球除数字外其它完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:①若取出的两个小球上数字之积大于8,则奖励飞机玩具一个;②若取出的两个小球上数字之积在区间上,则奖励汽车玩具一个;③若取出的两个小球上数字之积小于2,则奖励饮料一瓶.
(1)求每对亲子获得飞机玩具的概率;
(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.
19.(2023·全国·高三专题练习)通信信号利用BEC信道传输,若BEC信道传输成功,则接收端收到的信号与发来的信号完全相同.若BEC信道传输失败,则接收端收不到任何信号.传输技术有两种:一种是传统通信传输技术,采用多个信道各自独立传输信号(以两个信道为例,如图1).
另一种是华为公司5G信号现使用的土耳其通讯技术专家Erdal Arikan教授的发明的极化码技术(以两个信道为例,如图2).传输规则如下,信号直接从信道2传输;信号在传输前先与“异或”运算得到信号,再从信道1传输.若信道1与信道2均成功输出,则两信号通过“异或”运算进行解码后,传至接收端,若信道1输出失败信道2输出成功,则接收端接收到信道2信号,若信道1输出成功信道2输出失败,则接收端对信号进行自身“异或”运算而解码后,传至接收端.
(注:定义“异或”运算:).假设每个信道传输成功的概率均为.
(1)对于传统传输技术,求信号和中至少有一个传输成功的概率;
(2)对于Erdal Arikan教授的极化码技术;
①求接收端成功接收信号的概率;
②若接收端接收到信号才算成功完成一次任务,求利用极化码技术成功完成一次任务的概率.
20.(2023春·四川达州·高二四川省万源中学校考开学考试)某校从参加考试的学生中抽出 60 名学生,将其成绩(均为整数)分成六组 ),后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求成绩落在)上的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)按分层抽样从成绩在,[80,90)两个分数段的学生中选出11 人,再从这11 人中选2 人参加培训,求选出的2人在同一分数段的概率.
21.(2023·全国·高一专题练习)为普及消防安全知识,某学校组织相关知识竞赛.比赛共分为两轮,每位参赛选手均须参加两轮比赛,若其在两轮比赛中均胜出,则视为赢得比赛.已知在第一轮比赛中,选手甲、乙胜出的概率分别为,;在第二轮比赛中,甲、乙胜出的概率分别为,,甲、乙两人在每轮比赛中是否胜出互不影响.
(1)甲在比赛中恰好赢一轮的概率;
(2)从甲、乙两人中选1人参加比赛,派谁参赛赢得比赛的概率更大?
(3)若甲、乙两人均参加比赛,求两人中至少有一人赢得比赛的概率.
22.(2022·全国·高三专题练习)设是给定的正整数(),现有个外表相同的袋子,里面均装有个除颜色外其他无区别的小球,第个袋中有个红球,个白球.现将这些袋子混合后,任选其中一个袋子,并且从中连续取出三个球(每个取后不放回).
(1)若,假设已知选中的恰为第2个袋子,求第三次取出为白球的概率;
(2)若,求第三次取出为白球的概率;
(3)对于任意的正整数,求第三次取出为白球的概率.
第十章 概率(重难点专题复习)-2022-2023学年高一数学下学期期末复习举一反三系列(人教A版2019必修第二册): 这是一份第十章 概率(重难点专题复习)-2022-2023学年高一数学下学期期末复习举一反三系列(人教A版2019必修第二册),文件包含第十章概率重难点专题复习举一反三人教A版2019必修第二册解析版docx、第十章概率重难点专题复习举一反三人教A版2019必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
第十章 概率【过题型】-2022-2023学年高一数学单元复习(人教A版2019必修第二册): 这是一份第十章 概率【过题型】-2022-2023学年高一数学单元复习(人教A版2019必修第二册),文件包含第十章概率过题型解析版docx、第十章概率过题型原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
第六章 平面向量及其应用【过关测试】-2022-2023学年高一数学单元复习(人教A版2019必修第二册): 这是一份第六章 平面向量及其应用【过关测试】-2022-2023学年高一数学单元复习(人教A版2019必修第二册),文件包含第六章平面向量及其应用过关测试解析版docx、第六章平面向量及其应用过关测试原卷版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。