中考数学二轮复习考点突破专题18 等腰、等边三角形问题(教师版)
展开
这是一份中考数学二轮复习考点突破专题18 等腰、等边三角形问题(教师版),共23页。试卷主要包含了等腰三角形,等边三角形,解题方法要领等内容,欢迎下载使用。
专题18 等腰、等边三角形问题
一、等腰三角形
1. 定义:两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角.
2.等腰三角形的性质
性质1:等腰三角形的两个底角相等(简称“等边对等角”).
性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).
3.等腰三角形的性质的作用
性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.
性质2用来证明线段相等,角相等,垂直关系等.
4.等腰三角形是轴对称图形
等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.
5.等腰三角形的判定
如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).
要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.
二、等边三角形
1. 定义:三边都相等的三角形叫等边三角形.
2. 性质
性质1:等边三角形的三个内角都相等,并且每一个角都等于60°;
性质2:等边三角形是轴对称图形,并且有三条对称轴,分别为三边的垂直平分线。
3.判定
(1)三个角都相等的三角形是等边三角形;
(2)有一个角是60°的等腰三角形是等边三角形;
(3)有两个角是60°的三角形是等边三角形。
三、解题方法要领
1.等腰(边)三角形是一个特殊的三角形,具有较多的特殊性质,有时几何图形中不存在
等腰(边)三角形,可根据已知条件和图形特征,适当添加辅助线,使之构成等腰(边)三角形,然后利用其定义和有关性质,快捷地证出结论。
2.常用的辅助线有:(1)作顶角的平分线、底边上的高线、中线。(2)在三角形的中线问
题上,我们常将中线延长一倍,这样添辅助线有助于我们解决有关中线的问题。
3.分类讨论是等腰三角形问题中常用的思想方法,在已知等腰三角形的边和角的情况下求其他三角形的边或角,要对已知的边和角进行讨论,分类的标准一般是根据边是腰还是底来分类。
【例题1】(2020•临沂)如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=( )
A.40° B.50° C.60° D.70°
【答案】D
【解析】根据等腰三角形的性质可求∠ACB,再根据平行线的性质可求∠BCD.
∵在△ABC中,AB=AC,∠A=40°,
∴∠ACB=70°,
∵CD∥AB,
∴∠ACD=180°﹣∠A=140°,
∴∠BCD=∠ACD﹣∠ACB=70°.
【对点练习】如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是( )
A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC
【答案】A
【解析】本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC>∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.
∵AD=BD,
∴∠A=∠ABD,
∴∠ABC>∠A,所以C选项和D选项错误;
∴AC>BC,所以A选项正确;B选项错误.
【例题2】(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道( )
A.△ABC的周长 B.△AFH的周长
C.四边形FBGH的周长 D.四边形ADEC的周长
【答案】A
【解析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.
∵△GFH为等边三角形,
∴FH=GH,∠FHG=60°,
∴∠AHF+∠GHC=120°,
∵△ABC为等边三角形,
∴AB=BC=AC,∠ACB=∠A=60°,
∴∠GHC+∠HGC=120°,
∴∠AHF=∠HGC,
∴△AFH≌△CHG(AAS),
∴AF=CH.
∵△BDE和△FGH是两个全等的等边三角形,
∴BE=FH,
∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,
=(BD+DF+AF)+(CE+BE),
=AB+BC.
∴只需知道△ABC的周长即可.
【对点练习】如图所示,在等边三角形ABC的边BC、AC上分别取点D、E,使BD=CE,AD与BE相交于点P.则∠APE的度数为 °.
【答案】60
【解析】根据BD=CE可得CD=AE,即可证明△ACD≌△BAE,得∠CAD=∠ABE,再根据内角和为180°的性质即可解题。
∵BD=CE,
∴BC﹣BD=AC﹣CE,
即CD=AE,
在△ACD与△BAE中,,
∴△ACD≌△BAE(SAS),
∴∠CAD=∠ABE,
∵∠CAD+∠APE+∠AEB=180°,
∠ABE+∠BAE+∠AEB=180°,
∴∠APE=∠BAE=60°
【例题3】(2020•台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.
(1)求证:△ABD≌△ACE;
(2)判断△BOC的形状,并说明理由.
【答案】见解析。
【分析】(1)由“SAS”可证△ABD≌△ACE;
(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.
【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS);
(2)△BOC是等腰三角形,
理由如下:
∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,
∴∠OBC=∠OCB,
∴BO=CO,
∴△BOC是等腰三角形.
【对点练习】如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD.求证:
(1)BC=AD;
(2)△OAB是等腰三角形.
【答案】见解析。
【解析】证明:(1)∵AC⊥BC,BD⊥AD,
∴∠D=∠C=90°.
在Rt△ACB和Rt△BDA中,
∴△ACB≌△BDA(HL).
∴BC=AD.
(2)由△ACB≌△BDA,得∠CAB=∠DBA,
∴△OAB是等腰三角形.
【对点练习】已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.
【答案】见解析。
【解析】只要证明Rt△ADE≌Rt△CDF,推出∠A=∠C,推出BA=BC,又AB=AC,即可推出AB=BC=AC;
证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,
∴∠AED=∠CFD=90°,
∵D为AC的中点,
∴AD=DC,
在Rt△ADE和Rt△CDF中,
,
∴Rt△ADE≌Rt△CDF,
∴∠A=∠C,
∴BA=BC,∵AB=AC,
∴AB=BC=AC,
∴△ABC是等边三角形.
【对点练习】如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.
(1)求∠ECD的度数;(2)若CE=5,求BC长.
【答案】(1)∠ECD的度数是36°;
(2)BC长是5.
【解析】(1)∵DE垂直平分AC
∴CE=AE,
∴∠ECD=∠A=36°
(2)∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°,
∴∠BEC=∠A+∠ECD=72°,
∴∠BEC=∠B,
∴BC=EC=5.
一、选择题
1.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是( )
A.120° B.130° C.145° D.150°
【答案】B
【解析】由等腰三角形的性质得出∠B=∠C=65°,由平行线的性质得出∠CDE=∠B=65°,再由三角形的外角性质即可得出答案.
∵AB=AC,∠C=65°,
∴∠B=∠C=65°,
∵DF∥AB,
∴∠CDE=∠B=65°,
∴∠FEC=∠CDE+∠C=65°+65°=130°.
2.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=( )
A. B. C.a﹣b D.b﹣a
【答案】C
【解析】根据等腰三角形的性质和判定得出BD=BC=AD,进而解答即可.
∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,
∴∠ABC=∠C=2∠ABD=72°,
∴∠ABD=36°=∠A,
∴BD=AD,
∴∠BDC=∠A+∠ABD=72°=∠C,
∴BD=BC,
∵AB=AC=a,BC=b,
∴CD=AC﹣AD=a﹣b
3.(2020•徐州)如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于( )
A.75° B.70° C.65° D.60°
【答案】B
【解析】先利用对顶角相等和互余得到∠A=20°,再利用等腰三角形的性质得到∠OBA=∠A=20°,然后根据切线的性质得到OB⊥BC,从而利用互余计算出∠ABC的度数.
∵OC⊥OA,∴∠AOC=90°,
∵∠APO=∠BPC=70°,∴∠A=90°﹣70°=20°,
∵OA=OB,∴∠OBA=∠A=20°,
∵BC为⊙O的切线,∴OB⊥BC,∴∠OBC=90°,∴∠ABC=90°﹣20°=70°.
4.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )
A. B. C. D.不能确定
【答案】B
【解析】本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.
作出图形,根据等边三角形的性质求出高AH的长,再根据三角形的面积公式求出点P到三边的距离之和等于高线的长度,从而得解.
如图,∵等边三角形的边长为3,
∴高线AH=3×=,
S△ABC=BC•AH=AB•PD+BC•PE+AC•PF,
∴×3•AH=×3•PD+×3•PE+×3•PF,
∴PD+PE+PF=AH=,
即点P到三角形三边距离之和为.
5.(2019•浙江衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的。借助如图所示的“三等分角仪”能三等分任一角。这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=75°,则∠CDE的度数是( )
A. 60° B. 65° C. 75° D. 80°
【答案】D
【解析】考点是三角形内角和定理,三角形的外角性质,等腰三角形的性质。
∵OC=CD=DE,
∴∠O=∠ODC,∠DCE=∠DEC,
设∠O=∠ODC=x,
∴∠DCE=∠DEC=2x,
∴∠CDE=180°-∠DCE-∠DEC=180°-4x,
∵∠BDE=75°,
∴∠ODC+∠CDE+∠BDE=180°,
即x+180°-4x+75°=180°,
解得:x=25°,
∠CDE=180°-4x=80°.
6.(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( )
A.20°B.30°C.45° D.60°
【答案】B
【解析】在△ABC中,∵∠B=30°,∠C=90°,
∴∠BAC=180°﹣∠B﹣∠C=60°,
由作图可知MN为AB的中垂线,
∴DA=DB,
∴∠DAB=∠B=30°,
∴∠CAD=∠BAC﹣∠DAB=30°
二、填空题
7.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是 .
【答案】6
【解析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.
∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,
∴EF=2,
∵DE∥AB,DF∥AC,
∴△DEF是等边三角形,
∴剪下的△DEF的周长是2×3=6.
8.(2020•牡丹江)如图,在Rt△ABC中,CA=CB,M是AB的中点,点D在BM上,AE⊥CD,BF⊥CD,垂足分别为E,F,连接EM.则下列结论中:
①BF=CE;
②∠AEM=∠DEM;
③AE﹣CEME;
④DE2+DF2=2DM2;
⑤若AE平分∠BAC,则EF:BF:1;
⑥CF•DM=BM•DE,
正确的有 .(只填序号)
【解析】①②③④⑤⑥.
【分析】证明△BCF≌△CAE,得到BF=CE,可判断①;再证明△BFM≌△CEM,从而判断△EMF为等腰直角三角形,得到EFEM,可判断③,同时得到∠MEF=∠MFE=45°,可判断②;再证明△DFM≌△NEM,得到△DMN为等腰直角三角形,得到DN,DM,可判断④;根据角平分线的定义可逐步推断出DE=EM,再证明△ADE≌△ACE,得到DE=CE,则有,从而判断⑤;最后证明△CDM∽ADE,得到,结合BM=CM,AE=CF,可判断⑥.
【解析】∵∠ACB=90°,
∴∠BCF+∠ACE=90°,
∵∠BCF+∠CBF=90°,
∴∠ACE=∠CBF,
又∵∠BFD=90°=∠AEC,AC=BC,
∴△BCF≌△CAE(AAS),
∴BF=CE,故①正确;
由全等可得:AE=CF,BF=CE,
∴AE﹣CE=CF=CE=EF,
连接FM,CM,
∵点M是AB中点,
∴CMAB=BM=AM,CM⊥AB,
在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,
∴∠DBF=∠DCM,
又BM=CM,BF=CE,
∴△BFM≌△CEM(SAS),
∴FM=EM,∠BMF=∠CME,
∵∠BMC=90°,
∴∠EMF=90°,即△EMF为等腰直角三角形,
∴EFEM=AE﹣CE,故③正确,∠MEF=∠MFE=45°,
∵∠AEC=90°,
∴∠MEF=∠AEM=45°,故②正确,
设AE与CM交于点N,连接DN,
∵∠DMF=∠NME,FM=EM,∠DFM=∠DEM=∠AEM=45°,
∴△DFM≌△NEM(ASA),
∴DF=EN,DM=MN,
∴△DMN为等腰直角三角形,
∴DNDM,而∠DEA=90°,
∴DE2+DF2=DN2=2DM2,故④正确;
∵AC=BC,∠ACB=90°,
∴∠CAB=45°,
∵AE平分∠BAC,
∴∠DAE=∠CAE=22.5°,∠ADE=67.5°,
∵∠DEM=45°,
∴∠EMD=67.5°,即DE=EM,
∵AE=AE,∠AED=∠AEC,∠DAE=∠CAE,
∴△ADE≌△ACE(ASA),
∴DE=CE,
∵△MEF为等腰直角三角形,
∴EFEM,
∴,故⑤正确;
∵∠CDM=∠ADE,∠CMD=∠AED=90°,
∴△CDM∽ADE,
∴,
∵BM=CM,AE=CF,
∴,
∴CF•DM=BM•DE,故⑥正确。
9.如图所示,D是等边△ABC的AC边上的中点,点E在BC的延长线上,DE=DB,△ABC的周长是9,则∠E= °,CE= .
【答案】30;
【解析】由△ABC为等边三角形,且BD为边AC的中线,根据“三线合一”得到BD平分∠ABC,而∠ABC为60°,得到∠DBE为30°,又因为DE=DB,根据等边对等角得到∠E与∠DBE相等,故∠E也为30°;
由等边三角形的三边相等且周长为9,求出AC的长为3,且∠ACB为60°,根据∠ACB为△DCE的外角,根据三角形的外角等于与它不相邻的两个内角之和,求出∠CDE也为30°,根据等角对等边得到CD=CE,都等于边长AC的一半,从而求出CE的值
解:∵△ABC为等边三角形,D为AC边上的中点,
∴BD为∠ABC的平分线,且∠ABC=60°,
即∠DBE=30°,又DE=DB,
∴∠E=∠DBE=30°,
∵等边△ABC的周长为9,∴AC=3,且∠ACB=60°,
∴∠CDE=∠ACB﹣∠E=30°,即∠CDE=∠E,
∴CD=CE=AC=.
10.(2019黑龙江绥化)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=______度.
【答案】16
【解析】∵BD=AD,设∠A=∠ABD=x,∴∠BDC=2x,∵BD=BC,∴∠C=∠BDC=2x,∵AB=AC,∴∠ABC=∠C=2x,∴x+2x+2x=180°,∴x=36°.
三、解答题
11.(2020•绍兴)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.
答案:∠DAC=45°.
思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.
(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.
【答案】见解析。
【分析】(1)根据等腰三角形的性质得到∠AED=2∠C,①求得∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;
(2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.
【解析】(1)∠DAC的度数不会改变;
∵EA=EC,
∴∠AED=2∠C,①
∵∠BAE=90°,
∴∠BAD[180°﹣(90°﹣2∠C)]=45°+∠C,
∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②
由①,②得,∠DAC=∠DAE+∠CAE=45°;
(2)设∠ABC=m°,
则∠BAD(180°﹣m°)=90°m°,∠AEB=180°﹣n°﹣m°,
∴∠DAE=n°﹣∠BAD=n°﹣90°m°,
∵EA=EC,
∴∠CAEAEB=90°n°m°,
∴∠DAC=∠DAE+∠CAE=n°﹣90°m°+90°n°m°n°.
12.(2020•凉山州)如图,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.
(1)如图1,连接AQ、CP.求证:△ABQ≌△CAP;
(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数;
(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
【答案】见解析。
【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP即可;
(2)先判定△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;
(3)先判定△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.
【解析】(1)证明:如图1,∵△ABC是等边三角形
∴∠ABQ=∠CAP=60°,AB=CA,
又∵点P、Q运动速度相同,
∴AP=BQ,
在△ABQ与△CAP中,
,
∴△ABQ≌△CAP(SAS);
(2)点P、Q在AB、BC边上运动的过程中,∠QMC不变.
理由:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC是△ACM的外角,
∴∠QMC=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC
∵∠BAC=60°,
∴∠QMC=60°;
(3)如图2,点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变
理由:同理可得,△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC是△APM的外角,
∴∠QMC=∠BAQ+∠APM,
∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°,
即若点P、Q在运动到终点后继续在射线AB、BC上运动,∠QMC的度数为120°.
相关试卷
这是一份(通用版)中考数学总复习考点18 等腰、等边三角形问题(含解析),共23页。试卷主要包含了等腰三角形,等边三角形,解题方法要领等内容,欢迎下载使用。
这是一份中考数学一轮复习考点提高练习专题17 等腰、等边三角形问题(教师版),共19页。试卷主要包含了等腰三角形,等边三角形,解题方法要领等内容,欢迎下载使用。
这是一份中考数学二轮复习考点突破专题52 中考数学最值问题(教师版),共42页。试卷主要包含了解决几何最值问题的要领,解决代数最值问题的方法要领等内容,欢迎下载使用。