终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    【专项复习】最新小学六年级下册小升初数学 专题复习(16)图形的运动-轴对称

    立即下载
    加入资料篮
    【专项复习】最新小学六年级下册小升初数学 专题复习(16)图形的运动-轴对称第1页
    【专项复习】最新小学六年级下册小升初数学 专题复习(16)图形的运动-轴对称第2页
    【专项复习】最新小学六年级下册小升初数学 专题复习(16)图形的运动-轴对称第3页
    还剩12页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【专项复习】最新小学六年级下册小升初数学 专题复习(16)图形的运动-轴对称

    展开

    这是一份【专项复习】最新小学六年级下册小升初数学 专题复习(16)图形的运动-轴对称,共15页。试卷主要包含了夯实基础,提高拓,精做精练,查漏补缺等内容,欢迎下载使用。
    1、夯实基础。基础知识是整个数学知识体系中最根本的基石。学生在学校课堂一定要做到认真听讲,这直接关系到基础的落实。
    2、提高拓。在注重基础知识训练的同时,必须要分阶段、有针对性的对孩子进行专题训练,涉及的有关知识点要进行过关、强化训练,做到知识点之间能够融会贯通。
    3、精做精练。精选几套模拟试题,其中包括历年联考试题,从一月份开始要有计划的给孩子练习。
    4、查漏补缺。在做题的同时,会有许多错题产生,整理、归纳、订正错题是必不可少,订正比做题更加重要,对比错解的过程和订正后的正确过程,就能发现错误的原因。
    小升初数学是在小升初考试中所占比例最重的科目,所以小升初数学的复习一定要注意以上几个要点,争取彻底掌握小升初数学考试的知识点,才能够在小升初考试中脱颖而出。
    小学六年级小升初数学专题复习(16)
    ——图形的运动-轴对称
    ¤ 知识归纳总结
    一、轴对称
    知识归纳
    1.轴对称的性质:
    像窗花一样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点.
    把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.
    2.性质:
    (1)成轴对称的两个图形全等;
    (2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.
    常考题型
    例:如果把一个图形沿着 对折,两侧的图形能够 ,这个图形就是 .
    分析:依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,据此即可进行解答.
    解:据分析可知:
    如果把一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.
    故答案为:一条直线、完全重合、轴对称图形.
    点评:此题主要考查轴对称图形的意义.
    二、确定轴对称图形的对称轴条数及位置
    知识归纳
    1.对称轴的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线 (成轴)对称,这条直线就是它的对称轴.
    2.找到对应点的连线,如果连线的中点都在一条直线上,说明是其图形的对称轴.
    3.掌握一般图形的对称轴数目和位置对于快速判断至关重要.
    常考题型
    例1:下列图形中,( )的对称轴最多.
    A、正方形 B、等边三角形 C、等腰三角形 D、圆形
    分析:依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以作出正确选择.
    解:(1)因为正方形沿两组对边的中线及其对角线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,
    两组对边的中线及其对角线就是其对称轴,所以正方形有4条对称轴;
    (2)因为等边三角形分别沿三条边的中线所在的直线对折,对折后的两部分都能完全重合,
    则等边三角形是轴对称图形,三条边的中线所在的直线就是对称轴,所以等边三角形有3条对称轴;
    (3)因为等腰梯形沿上底与下底的中点的连线对折,对折后的两部分都能完全重合,则等腰梯形是轴对称图形,
    上底与下底的中点的连线就是其对称轴,所以等腰梯形有1条对称轴;
    (4)因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,
    任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.
    所以说圆的对称轴最多.
    故选:D.
    点评:解答此题的主要依据是:轴对称图形的概念及特征.
    例2:下列图形中,对称轴条数最多的是( )
    分析:先找出对称轴,从而得出对称轴最多的图形.
    解:A:根据它的组合特点,它有4条对称轴;
    B:这是一个正八边形,有8条对称轴;
    C:这个组合图形有3条对称轴;
    D:这个图形有5条对称轴;
    故选:B.
    点评:此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.
    三、轴对称图形的辨识
    知识归纳
    1.轴对称图形的概念:
    如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
    2.学过的图形中,线段、角、等腰三角形、等边三角形、长方形、正方形、等腰梯形、圆形、扇形都是轴对称图形,各自有不同数目的对称轴.
    常考题型
    例:如图的交通标志中,轴对称图形有( )
    A、4 B、3 C、2 D、1
    分析:依据轴对称图形的定义即可作答.
    解:图①、③沿一条直线对折后,直线两旁的部分能够互相重合,所以图①、③是轴对称图形;
    图②、④无论沿哪一条直线对折后,直线两旁的部分都不能够互相重合,所以它们不是轴对称图形.
    如图的交通标志中,轴对称图形有2个.
    故选:C.
    点评:此题主要考查轴对称图形的定义.
    ¤ 拔高训练备考
    一.选择题(共6小题)
    1.下面图形中,不是轴对称图形的是( )
    A.正方形B.长方形C.平行四边形D.圆
    2.下列交通标志中,( )是轴对称图形。
    A.B.C.
    3.下列图形中对称轴最多的是( )
    A.等腰梯形B.正方形C.半圆形D.等边三角形
    4.圆的对称轴有( )
    A.1条B.2条C.无数条
    5.如图,打开后是( )
    A.B.C.
    6.下图是日本三菱汽车的标志,这个标志有( )条对称轴.
    A.1B.2C.3D.4
    二.填空题(共6小题)
    7.数学源于生活,生活中处处有数学。我们每天都能看到汽车在平坦的道路上平稳行驶,它的车轮平面轮廓采用圆形,车轴装在车轮的 处,车轮在滚动过程中,车轴离地面的距离总是等于车轮的 。
    8.被列为非物质文化遗产的陕北剪纸,通过现场操作等多种形式,让市民体验到了传统技艺的妙趣.某市民将一个正方形彩纸依次按如图1、图2所示的方式对折,然后沿图3中的虚线裁剪,则将图3的彩纸展开铺平后的图形是图4中的 .(填序号)
    9.在我们学过的平面图形中,长方形有 条对称轴,正方形有 条对称轴,等边三角形有 条对称轴。
    10.图中能画 条对称轴.
    11.写出两个对称的字母: 、 .
    12.一个三角形如图对折后两边完全重合在一起,这是一个 三角形,有 条对称轴.
    三.判断题(共5小题)
    13.三角形是轴对称图形.
    14.圆和圆环都是轴对称图形. .
    15.圆的直径就是圆的对称轴. .
    16.五角星是轴对称图形,它只有1条对称轴.
    17.点A到对称轴的距离是4小格,它的对称点A′到对称轴的距离也是4小格.
    四.应用题(共2小题)
    18.拿一张长纸条,将它一反一正折叠起来,并画出字母E.用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图.
    观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?
    19.下面哪种剪法不会剪出半个人形图案?请在( )里画“〇”.再剪一剪,验证一下你的想法是否正确.
    五.操作题(共2小题)
    20.下面的图形分别是从哪张对折后的纸上剪下的?
    21.在下列各图形中,分别能画出几条对称轴?画出来。
    六.解答题(共4小题)
    22.下面的图案是轴对称的吗?是的在括号里里画“√“,不是的画“ד。.
    23.先画出如图所示图形所有的对称轴,再数一数,填一填。
    24.在图中再涂一个正方形,使涂色部分成为一个轴对称图形,一共有 种不同的涂法。
    25.贝贝和甜甜都将一张手工纸对折两次,然后画线剪下涂色部分。下面是她们的对折方法,请你根据她们的对折方法画出剪下图案的展开图。
    参考答案与试题解析
    一.选择题(共6小题)
    1.【分析】一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此进行判断即可.
    【解答】解:根据轴对称图形的意义可知,
    正方形、长方形和圆是轴对称图形,只有平行四边形不是轴对称图形;
    故选:C。
    【点评】此题考查了轴对称图形的判断方法.
    2.【分析】利用轴对称图形的定义进行解答即可。如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。
    【解答】解:不是轴对称图形;是轴对称图形;不是轴对称图形。
    故选:B。
    【点评】此题主要考查了轴对称图形,熟记定义是解答本题的关键。
    3.【分析】直接利用轴对称图形的定义,分析四个图形对称轴的条数,即可作出判断。
    【解答】解:A:等腰梯形有一条对称轴;
    B:正方形有4条对称轴;
    C:半圆有1条对称轴;
    D:等边三角形有3条对称轴
    所以对称轴最多的是正方形有4条对称轴。
    故选:B。
    【点评】本题主要考查了轴对称图形的定义,正确掌握等腰梯形、正方形、半圆、等边三角形的性质是解题的关键。
    4.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.
    【解答】解:圆的对称轴是经过圆心的直线,经过一点的直线有无数条,
    所以,圆有无数条对称轴.
    故选:C.
    【点评】判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.
    5.【分析】根据把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形。
    【解答】解:如图,打开后是(B)。
    故选:B。
    【点评】本题主要考查轴对称图形的意义。
    6.【分析】依据轴对称图形的定义即可作答.
    【解答】解:如图所示,这个标志有3条对称轴;
    答:这个标志有3条对称轴.
    【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.
    二.填空题(共6小题)
    7.【分析】根据圆的特征:连接圆心到圆上任意一点的线段,叫做半径;在同圆中所有的半径都相等;可知:把车轮做成圆形,车轴定在圆心,而且车轮上各点到车轴即圆心的距离都等于半径,是因为圆形易滚动,当车轮在平面上滚动时,车轴与平面的距离保持不变;车轮在滚动过程中圆心始终在一条直线上运动,据此解答。
    【解答】解:我们每天都能看到汽车在平坦的道路上平稳行驶,它的车轮平面轮廓采用圆形,车轴装在车轮的圆心处,车轮在滚动过程中,车轴离地面的距离总是等于车轮的半径。
    故答案为:圆心,半径。
    【点评】此题考查了圆的特征,应注意基础知识的积累和应用。
    8.【分析】找一张纸,按照图中的顺序向上对折,再向左对折,按位置剪去画的虚线的形状,然后展开即可.
    【解答】解:经过动手操作,发现将图3的彩纸展开铺平后的图形是图4中的第四个图.
    故答案为:④.
    【点评】此题主要考查轴对称图形的意义和动手操作的能力.
    9.【分析】根据对称轴的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线就是它的对称轴。
    【解答】解:在我们学过的平面图形中,长方形有2条对称轴,正方形有4条对称轴,等边三角形有3条对称轴。
    故答案为:2;4;3。
    【点评】此题主要考查轴对称图形定义及对称轴的条数。
    10.【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的对称轴.根据轴对称图形的定义,找出所有的对称轴,并画出即可.
    【解答】解:
    图中能画4条对称轴;
    故答案为:4.
    【点评】此题考查了根据轴对称图形 定义画出轴对称图形的对称轴的方法.
    11.【分析】根据轴对称图形的意义:如果一个图形沿一条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;依次进行判断即可.
    【解答】解:写出两个对称的字母:O、M;
    故答案为:O、M.
    【点评】判断轴对称图形的关键是寻找对称轴,看图形两部分对折后是否重合.
    12.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.
    【解答】解:一个三角形如图对折后两边完全重合在一起,这是一个 等腰三角形,有 1条对称轴;
    故答案为:等腰,1.
    【点评】解答此题的主要依据是:轴对称图形的概念及特征.
    三.判断题(共5小题)
    13.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可进行判断.
    【解答】解:等腰三角形沿底边及其对应顶点所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,而题干中没说明是什么三角形,
    所以不能判定这个三角形就是轴对称图形;
    故答案为:×.
    【点评】此题主要考查轴对称图形的意义,注意平时基础知识的积累.
    14.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.
    【解答】解:根据轴对称图形的含义可知:圆和圆环都是轴对称图形;
    所以原题说法正确.
    故答案为:√.
    【点评】判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.
    15.【分析】对称轴是直线,但是直径是一条线段,只能说圆有无数条对称轴,每条对称轴都经过直径,或说圆关于直径对称.而不能说每一条对称轴都是直径.
    【解答】解:对称轴是直线,但是直径是一条线段,只能说圆有无数条对称轴,每条对称轴都经过直径,或说圆关于直径对称.而不能说每一条对称轴都是直径.
    故答案为:×.
    【点评】本题是考查轴对称图形的意义及对称轴的确定.
    16.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.
    【解答】解:五角星是轴对称图形,它只有5条对称轴,故原题说法错误;
    故答案为:×.
    【点评】解答此题的主要依据是:轴对称图形的概念及特征,找出各个图形的对称轴条数即可解答问题.
    17.【分析】根据轴对称图形的性质,各对称点到对称轴的距离相等.据此判断即可.
    【解答】解:由轴对称图形的性质可知:各对称点到对称轴的距离相等.
    因此,点A到对称轴的距离是4小格,它的对称点A′到对称轴的距离也是4小格.此说法是正确的.
    故答案为:√.
    【点评】此题考查的目的是理解掌握轴对称图形的性质及应用.
    四.应用题(共2小题)
    18.【分析】根据轴对称图形的定义可知,左起和右起的三个图案各为一组,这两组图案成轴对称.
    【解答】解:左起和右起的三个图案各为一组,这两组图案成轴对称关系.
    【点评】主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.
    19.【分析】根据轴对称图形的定义可知,折痕就是展开后相邻的两个图形的对称轴,据此判断即可.
    【解答】解:折痕就是展开后相邻的两个图形的对称轴,第一种剪法会剪出整个人形图案,第二种剪法会剪出半个人形图案.
    故答案为:
    【点评】本题主要考查学生的动手能力及空间想象能力,正确理解对称轴的定义是解题的关键.
    五.操作题(共2小题)
    20.【分析】轴对称:在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴。剪纸图案属于一种轴对称图形。
    【解答】解:
    【点评】此题考查了轴对称的意义及在实际当中的运用。
    21.【分析】轴对称:在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴。
    【解答】解:
    【点评】此题考查了轴对称的意义及在实际当中的运用。
    六.解答题(共4小题)
    22.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可。
    【解答】解:
    【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合。
    23.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,进行解答即可。
    【解答】解:
    【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合。
    24.【分析】给“九宫格”按顺序编上序号,原来的阴影在1和5,再涂一个使阴影部分成为一个轴对称图形,可以涂:7或9或3或2或4,一共5种涂法,据此解答。
    【解答】解:如图所示:
    给“九宫格”按顺序编上序号,涂一个使阴影部分成为一个轴对称图形,可以涂:第7、9、3、2、4个格子,一共5种涂法。
    故答案为:5。
    【点评】此题考查了轴对称的意义及在实际当中的运用。
    25.【分析】把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴,据此解答。
    【解答】解:如图:
    【点评】此题主要考查轴对称图形的意义。

    相关试卷

    【专项复习】最新小学六年级下册小升初数学 专题复习(28)“式”的规律:

    这是一份【专项复习】最新小学六年级下册小升初数学 专题复习(28)“式”的规律,共15页。试卷主要包含了夯实基础,提高拓,精做精练,查漏补缺,88.2÷9=9.8等内容,欢迎下载使用。

    【专项复习】最新小学六年级下册小升初数学 专题复习(27)数列中的规律:

    这是一份【专项复习】最新小学六年级下册小升初数学 专题复习(27)数列中的规律,共18页。试卷主要包含了夯实基础,提高拓,精做精练,查漏补缺,2.5,32,1958等内容,欢迎下载使用。

    【专项复习】最新小学六年级下册小升初数学 专题复习(19)方向与位置:

    这是一份【专项复习】最新小学六年级下册小升初数学 专题复习(19)方向与位置,共16页。试卷主要包含了夯实基础,提高拓,精做精练,查漏补缺等内容,欢迎下载使用。

    数学口算宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map