|试卷下载
搜索
    上传资料 赚现金
    专题9.8菱形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册 必刷题【苏科版】
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题9.8菱形的判定专项提升训练(重难点培优)- 2022-2023学年八年级数学下册 必刷题(原卷版)【苏科版】.docx
    • 解析
      专题9.8菱形的判定专项提升训练(重难点培优)- 2022-2023学年八年级数学下册 必刷题(解析版)【苏科版】.docx
    专题9.8菱形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册  必刷题【苏科版】01
    专题9.8菱形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册  必刷题【苏科版】02
    专题9.8菱形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册  必刷题【苏科版】03
    专题9.8菱形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册  必刷题【苏科版】01
    专题9.8菱形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册  必刷题【苏科版】02
    专题9.8菱形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册  必刷题【苏科版】03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题9.8菱形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册 必刷题【苏科版】

    展开
    这是一份专题9.8菱形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册 必刷题【苏科版】,文件包含专题98菱形的判定专项提升训练重难点培优-2022-2023学年八年级数学下册必刷题解析版苏科版docx、专题98菱形的判定专项提升训练重难点培优-2022-2023学年八年级数学下册必刷题原卷版苏科版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    2022-2023学年八年级数学下册 必刷题【苏科版】

    专题9.8菱形的判定专项提升训练(重难点培优)

    班级___________________   姓名_________________   得分_______________

    注意事项:

    本试卷满分100分,试题共24题,其中选择8道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.

    一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.

    1.(2022·福建三明·九年级统考期中)以下条件中能判定平行四边形为菱形的是(     

    A B C D

    【答案】C

    【分析】根据菱形的判定定理即可进行解答.

    【详解】解:

    如图:对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形;

    故选:C

    【点睛】本题主要考查了菱形的判定定理,解题的关键是熟练掌握对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形;四边相等的四边形是菱形.

    2.(2022·云南楚雄·九年级统考期中)下列关于菱形的说法中正确的是(     

    A.对角线互相垂直的四边形是菱形 B.菱形的对角线互相垂直且平分

    C.菱形的对角线相等且互相平分 D.对角线互相平分的四边形是菱形

    【答案】B

    【分析】根据菱形的性质及判定,逐项进行判断即可.

    【详解】解:A.对角线互相垂直平分的四边形是菱形,故A错误;

    BC.菱形的对角线互相垂直且平分,故B正确,C错误;

    D.对角线互相平分的四边形是平行四边形,故D错误.

    故选:B

    【点睛】本题主要考查了菱形的判定和性质,解题的关键是熟记菱形的对角线垂直且互相平分,对角线互相垂直平分的四边形是菱形.

    3.(2022·江苏无锡·校考二模)下列命题中:(1)两组对边分别相等的四边形是平行四边形;(2)对角线相等的平行四边形是矩形;(3)一组邻边相等的平行四边形是菱形;(4)对角线相等且互相垂直的四边形是正方形,正确的命题个数为(      

    A1 B2 C3 D4

    【答案】C

    【分析】根据平行形四边形、矩形、菱形、正方形的判定分别得出各选项是否正确即可.

    【详解】解:(1)两组对边分别相等的四边形是平行四边形,根据平行四边形的判定得出,表述正确,符合题意;

    2)对角线相等的平行四边形是矩形;根据矩形的判定得出,表述正确,符合题意;

    3)一组邻边相等的平行四边形是菱形;根据菱形的判定得出,表述正确,符合题意;

    4)对角线相等且互相垂直的平行四边形是正方形;原表述错误,不符合题意.

    故选:C

    【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定理.

    4.(2022·广东梅州·九年级校考阶段练习)如图,在菱形中,分别是菱形四边的中点,连接,且交于点,则图中共有菱形(    

    A B C D

    【答案】B

    【分析】由菱形的判定和选择,图中菱形有:四边形,四边形,四边形均为菱形,四边形,四边形,共5

    【详解】四边形是菱形,

    分别是菱形中四边的中点,

    四边形为菱形,

    同理:四边形,四边形,四边形均为菱形,

    图中共有5个菱形,即:四边形,四边形,四边形均为菱形,四边形,四边形

    故选B

    【点睛】本题考查了菱形的判定,解决本题的关键是掌握四边相等的四边形是菱形.

    5.(2022·广东梅州·九年级校考阶段练习)如图,,则下列说法中不正确的是(    

    A.四边形是平行四边形

    B.如果,那么四边形是矩形

    C.如果,那么四边形是菱形

    D.如果,那么四边形是菱形

    【答案】D

    【分析】两组对边分别平行的平行四边形是平行四边形;有一个角是的平行四边形是矩形;有一组邻边相等的平行四边形是菱形;四个角是直角且四个边都相等的四边形是正方形,据此逐个判断即可.

    【详解】A

    四边形是平行四边形,

    A选项正确;

    B

    四边形是平行四边形,

    平行四边形是矩形,

    B选项正确;

    C

    ,

    ,

    四边形是平行四边形,

    四边形是菱形,故C选项正确;

    D:如果

    则四边形是菱形,

    D选项错误;

    故选:D

    【点睛】本题考查了平行四边形的判定定理,矩形的判定定理,菱形的判定定理和正方形的判定定理等知识点,熟练掌握判定定理是解题的关键.

    6.(2022·福建三明·九年级统考期中)如图,矩形中,中点,过点的直线分别与交于点,连结,交于点,连结.若,则下列结论:

    四边形是菱形;

    垂直平分线段

    其中正确结论的个数是(   

    A1 B2 C3 D4

    【答案】C

    【分析】根据,则,根据点的中点,证明,判断;根据矩形的性质,得,根据,证明四边形是平行四边形,根据,得;根据,得,等量代换,得垂直平分线段,即可判断;利用线段垂直平分线的性质的逆定理,可判断;根据直角三角形中,所对的直角边等于斜边的一半,则,根据,得,等量代换,即可判断

    【详解】在矩形中,

    的中点

    正确;

    在矩形中,

    四边形是平行四边形,

    垂直平分线段

    平行四边形是菱形.

    正确;

    是等边三角形,

    垂直平分线段

    正确;

    不正确.

    综上所述,正确的有

    故选:C

    【点睛】本题考查矩形,菱形,垂直平分线的性质,等边三角形和全等三角形等知识,解题的关键是掌握矩形的性质,菱形的判定和性质,垂直平分线的性质,等边三角形的性质,全等三角形判定和性质.

    7.(2022·广东茂名·九年级校联考阶段练习)如图,在矩形中,O的中点,过点O的直线分别交FE,点G的中点,且,则下列结论:(1;(2;(3)四边形为菱形;(4.其中正确的个数为(   

    A4 B3 C2 D1

    【答案】B

    【分析】根据条件,是直角斜边上的中线,且,然后利用三角函数求得以及之间的关系即可作出判断.

    【详解】解:的中点,

    中,

    ,设

    ,故正确;

    ,故错误;

    四边形是菱形,故正确;

    ,故正确;

    综上所述正确的有3个.

    故选:B

    【点睛】本题考查了矩形的性质以及菱形的判定,正确理解图形中,从而确定以及之间的关系是关键.

    8.(2022·四川成都·九年级四川省成都市七中育才学校校考期中)如图,在四边形中,对角线相交于点,且,下列说法错误的是(   

    A.若,四边形是菱形

    B.若,四边形是矩形

    C.若,四边形是正方形

    D.若,四边形是正方形

    【答案】D

    【分析】由平行四边形的判定、矩形的判定、菱形的判定以及正方形的判定分别对各个选项进行判断即可.

    【详解】解:

    四边形是平行四边形,

    A、若,则平行四边形是菱形,故选项A不符合题意;

    B、若,则平行四边形是矩形,故选项C不符合题意;

    C、若,则平行四边形是正方形,故选项C不符合题意;

    D、若,则平行四边形是矩形,故选项D符合题意;

    故选:D

    【点睛】本题考查了矩形的判定、菱形的判定、平行四边形的判定以及正方形的判定等知识,熟练掌握各四边形的判定是解题的关键.

    二、填空题(本大题共8小题,每小题2分,共16分)请把答案直接填写在横线上

    9.(2022·黑龙江齐齐哈尔·八年级统考期末)如图,在中,对角线相交于点O,在不添加任何辅助线的情况下,请你加一个条件________,使是菱形.

    【答案】(答案不唯一).

    【分析】根据菱形的判定方法即可得出答案.

    【详解】解:四边形ABCD为平行四边形,

    AB=BCACBDAC平分DAB时,四边形ABCD为菱形.

    故答案为:AB=BC(答案不唯一).

    【点睛】本题考查了菱形的判定,熟记菱形的判定方法是解题的关键.

    10.(2022·江苏常州·八年级统考期中)如图,已知四边形是平行四边形,从中选择一个作为条件,补充后使四边形成为菱形,则其选择是___(限填序号).

    【答案】

    【分析】根据菱形的判定、矩形的判定、平行四边形的性质即可得.

    【详解】解:时,平行四边形是菱形(有一组邻边相等的平行四边形是菱形);

    时,平行四边形是矩形(对角线相等的平行四边形是矩形);

    由平行四边形的性质可知,,则不能作为构成菱形的条件;

    故答案为:

    【点睛】本题考查了菱形的判定、矩形的判定、平行四边形的性质,熟练掌握菱形的判定方法是解题关键.

    11.(2022·江苏徐州·八年级统考阶段练习)如图,两张等宽的矩形纸条交叉叠放在一起,若重合部分构成的四边形中,,则四边形的面积为___________

    【答案】24

    【分析】过点AAECDEAFBCF,由纸张的宽度相等得到AE=AF,再根据平行四边形等面积法证明AB=AD,进而证明四边形ABCD是菱形,再根据菱形的面积求解即可.

    【详解】解:过点AAECDEAFBCF,连接ACBD交于点O,如图所示:

    两条纸条宽度相同,

    AE=AF

    ABCDADBC

    四边形ABCD是平行四边形,

    SABCD=BC•AF=CD•AE

    AE=AF

    BC=CD

    四边形ABCD是菱形,

    BO=DO=3ACBD

    菱形ABCD的面积为:

    故答案为:24

    【点睛】本题考查了菱形的判定与性质、平行四边形性质以及勾股定理等知识,证得四边形ABCD为菱形是解题的关键.

    12.(2022·江苏盐城·八年级统考期中)如图,在中,点的中点,点分别在线段及其延长线上,且,给出下列条件::从中选择一个条件使四边形是菱形,你认为这个条件是_______(只填写序号).

    【答案】

    【分析】根据点的中点,点分别在线段及其延长线上,且,即可证明四边形是平行四边形,然后根据菱形的判定即可作出判断.

    【详解】解:的中点,

    四边形是平行四边形,

    时,四边形是矩形,不一定是菱形;

    时,

    的中点,

    的垂直平分线,

    平行四边形是菱形;

    四边形是平行四边形,则一定成立,故不一定是菱形.

    故答案为:

    【点睛】本题考查了菱形的判定,平行四边形的判定,垂直平分线的性质.菱形的判定常用三种方法:定义;四边相等;对角线互相垂直平分.理解和掌握菱形的判定是解题的关键.

    13.(2022·江苏盐城·八年级校考期中)如图,四边形中,分别是边的中点.若四边形为菱形,则对角线应满足条件______

    【答案】

    【分析】根据菱形的性质定理分析即可求解.

    【详解】因为四边形EFGH为菱形,

    所以

    EFGH分别是边ABBCCDDA的中点.

    故答案为:

    【点睛】本题考查了菱形性质、中位线性质,掌握菱形的性质是解题的关键.

    14.(2022·江苏扬州·八年级校联考期末)如图,在四边形ABCD中,PQMN分别是ADBCBDAC的中点,当四边形ABCD满足_______时(填写一个条件),PQMN

    【答案】AB=CD

    【分析】根三角形中位线的性质,菱形的性质即可解答;

    【详解】解:PQMN分别是ADBCBDAC的中点,

    PNACD的中位线,PN=CD MQBCD的中位线,MQ=CD

    MQ=PN=CD

    同理可得:NQ=PM=AB

    AB=CD时,MQ=PN=NQ=PM,四边形MQNP是菱形,

    菱形对角线垂直平分,

    PQMN

    故答案为:AB=CD

    【点睛】本题考查了三角形中位线的性质,菱形的判定和性质,掌握菱形的性质是解题关键.

    15.(2019·江苏无锡·八年级无锡市江南中学校考期中)如图,在ABC中,ADCD分别平分∠BAC∠ACBAE∥CDCE∥AD.若从三个条件:①AB=AC②AB=BC③AC=BC中,选择一个作为已知条件,则能使四边形为菱形的是__(填序号).

    【答案】

    【分析】根据作条件,先证明四边形ADCE是平行四边形,再利用邻边相等,得到四边形ADCE是菱形.

    【详解】解:当BA=BC时,四边形ADCE是菱形.

    理由:∵AE∥CDCE∥AD

    四边形ADCE是平行四边形,

    ∵BA=BC

    ∴∠BAC=∠BCA

    ∵ADCD分别平分∠BAC∠ACB

    ∴∠DAC=∠DCA

    ∴DA=DC

    四边形ADCE是菱形.

    【点睛】本题考查的知识点是菱形的证明,解题关键是熟记菱形的性质.

    16.(2022·江苏扬州·八年级校考阶段练习)如图,平行四边形中,对角线交于点分别是的中点.下列结论正确的是__________.(填序号)

    平分平分四边形是菱形.

    【答案】①②③

    【分析】由中点的性质可得出,且,结合平行即可证得结论成立,由 得出,即而得出,由中线的性质可知GP∥BE,且,通过证得出得出成立,再证得出成立,此题得解.

    【详解】解:令的交点为点,如图

    分别是的中点,

    ,且

    四边形为平行四边形,

    AB∥CD,且

    (两直线平行,内错角相等),

    的中点,

    中,

    ,即成立,

    (内错角相等,两直线平行),

    ,点为平行四边形对角线交点,

    中点,

    ∴∠BEA=

    ∴∠APG=∠BEA=

    中点,

    ,即正确;

    GE=EF

    平分正确;

    另外,无法判断平分和四边形是菱形成立,故④⑤错误;

    综上所述,正确的有①②③

    故答案为:①②③

    【点睛】本题考查了全等三角形的判定与性质、中位线定理、等腰三角形的性质以及平行线的性质定理,解题的关键是利用中位线,寻找等量关系,借助于证明全等三角形找到边角相等.

    三、解答题(本大题共8小题,共68分.解答时应写出文字说明、证明过程或演算步骤)

    17.(2019·江苏泰州·统考模拟预测)如图,在ABCD中,AE⊥BC于点ECF⊥AB于点F,且AECF,求证:ABCD是菱形.

    【答案】证明见解析

    【分析】根据AAS证明△ABE≌△CBF,进而利用全等三角形的性质得出BCBA,进而利用菱形的判定证明即可.

    【详解】证明:∵AE⊥BC于点ECF⊥AB于点F

    ∴∠CFB∠AEB90°

    △ABE△CBF

    ∴△ABE≌△CBFAAS),

    ∴BCBA

    四边形ABCD是平行四边形,

    ABCD是菱形.

    【点睛】此题考查菱形的判定,关键是根据AAS证明△ABE≌△CBF,进而利用全等三角形的性质得出BCBA

    18.(2019·江苏苏州·校联考中考模拟)已知平行四边形ABCD中,如图,对角线ACBD相交于点OAC=10BD=8

    1)若AC⊥BD,试求四边形ABCD的面积;

    2)若ACBD的夹角∠AOD=60°,求四边形ABCD的面积.

    【答案】(1)S菱形ABCD40(2)SABCD=20

    【分析】(1)先证平行四边形ABCD是菱形,根据菱形的面积公式即可求解;

    2)过点A分别作AE⊥BD,垂足为E,根据三角函数即可求得AE的长,从而求得OAD的面积,四边形ABCD的面积是三角形OAD的面积的4倍,据此即可求解.

    【详解】解:(1)∵AC⊥BD

    平行四边形ABCD为菱形,

    ∴S菱形ABCDAC×BD40

    (2)过点A分别作AE⊥BD,垂足为E

    四边形ABCD为平行四边形,

    ∴AOCOAC5BODOBD4

    RtAOE中,sin∠AOE

    ∴AEAO•sin∠AOEAO×sin60°

    ∴SABCDOD•AE×4×4××420

    故答案为(1)S菱形ABCD40(2)SABCD=20 .

    【点睛】本题考查平行四边形的性质,菱形的性质和判定的应用,正确理解四边形ABCD的面积是OAD的面积的4倍是解题的关键.

    19.(2018·江苏苏州·八年级统考期末)如图,在四边形ABCD中,ABDCEFGH分别是ADBCBDAC的中点.

    1)证明:EGEH;(2)证明:四边形EHFG是菱形.

    【答案】(1)见解析;(2)见解析.

    【分析】(1)利用EG△ABD的中位线,EH△ADC的中位线,则有EGABEHCD,又ABCD,可证EGEH,即可解题.

    2)首先运用三角形中位线定理可得到EG∥ABHF∥ABEH∥CDFE∥DC,从而再根据平行于同一条直线的两直线平行得到GF∥EHGE∥FH,可得到GFHE是平行四边形,再运用三角形中位线定理证明邻边相等,从而证明它是菱形.

    【详解】解:证明:(1四边形ABCD中,点FEGH分别是BCADBDAC的中点,

    ∴EG△ABD的中位线,EH△ADC的中位线,

    ∴EGABEHCD

    ∵ABCD

    ∴EGEH

    2四边形ABCD中,点FEGH分别是BCADBDAC的中点,

    ∴EG∥ABHF∥ABEH∥CDFE∥DC

    ∴GF∥EHGE∥FH(平行于同一条直线的两直线平行);

    四边形GFHE是平行四边形,

    四边形ABCD中,点EFGH分别是BCADBDAC的中点,

    ∴EG△ABD的中位线,GF△BCD的中位线,

    ∴GEABGFCD

    ∵ABCD

    ∴GEGF

    四边形EHFG是菱形.

    【点睛】此题主要考查了三角形中位线定理和菱形的判定方法,利用三角形中位线定理解答是关键.

    20.(2021·江苏南通·八年级校考阶段练习)如图,在中,点DE分别是边BCAC的中点,过点ADE的延长线于F点,连接ADCF

    1)求证:四边形ADCF是平行四边形;

    2)当满足什么条件时,四边形图ADCF是菱形?为什么?

    【答案】(1)见解析;(2)当ABC是直角三角形,且∠BAC=90°时,四边形ADCF是菱形,理由见解析.

    【分析】(1)首先利用平行四边形的判定方法得出四边形ABDF是平行四边形,进而得出AF=DC,利用一组对边相等且平行的四边形是平行四边形,进而得出答案;

    2)利用直角三角形的性质结合菱形的判定方法得出即可.

    【详解】(1)证明:DE分别是边BCAC的中点,

    ∴DE∥ABBD=CD

    ∵AF∥BC

    四边形ABDF是平行四边形,

    ∴AF=BD,则AF=DC

    ∵AF∥BC

    四边形ADCF是平行四边形;

    2)解:当ABC是直角三角形,且∠BAC=90°时,四边形ADCF是菱形,

    理由:ABC是直角三角形,且∠BAC=90°

    D是边BC的中点,

    ∴AD=DC

    平行四边形ADCF是菱形.

     

    【点睛】本题考查平行四边形的判定与性质以及菱形的判定,熟练应用平行四边形的判定与性质是解题关键.

    21.(2022·江苏盐城·校考三模)如图1,在中,是斜边上的中线,点E为射线上一点,将沿折叠,点B的对应点为点F

    (1),垂足为G,点F与点D在直线的异侧,连接.如图2,判断四边形的形状,并说明理由;

    (2),则的长度为____________

    【答案】(1)四边形为菱形,理由见解析;

    (2)

     

    【分析】(1)根据菱形的判定定理证明即可;

    2)证明,作交于点H,设,则,求出,进一步可求出

    【详解】(1)解:四边形为菱形,理由如下:

    是斜边上的中线,

    由折叠的性质可得:

    四边形为平行四边形,

    四边形为菱形.

    2)解:

    是斜边上的中线,

    交于点H

    ,则

    ,解得:

    故答案为:

    【点睛】本题考查菱形的判定定理,所对的直角边等于斜边的一半,斜边上的中线等于斜边的一半,正切值,勾股定理,折叠的性质.解题的关键是熟练掌握以上相关知识点,并能够综合运用.

    22.(2020·江苏淮安·八年级统考期中)如图,在中,,点D从点C出发沿CA方向以的速度向点A匀速运动,同时点E从点A出发沿AB方向以的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点DE运动的时间是秒().过点于点F,连接DEEF

    (1)求证:

    (2)四边形能够成为菱形吗?如果能,求出相应的值,如果不能,说明理由;

    (3)为何值时,为直角三角形?请说明理由.

    【答案】(1)证明见解析;

    (2)t=10

    (3)t=12时,DEF为直角三角形,理由见解析.

     

    【分析】(1)由题意得BCA=30°CD=4tcmAE=2tcm,再由含30°角的直角三角形的性质得DF=DC=2tcm, 即可得到AE=DF

    2)由AE=AD,得四边形AEFD为菱形,得2t=60-4t,进而求得t的值;

    3)分EDF=90°DEF=90°两种情况,根据直角三角形的性质列出算式,计算即可.

    【详解】(1)证明:由题意可知CD=4tcmAE=2tcm

    ∵∠B=90°A=60°

    ∴∠C=30°

    DF=DC=2t cm

    AE=2t cmDF=2t cm

    AE=DF

    2)解:ABBCDFBC

    AE=DF

    四边形AEFD为平行四边形,

    要使平行四边形AEFD为菱形,则需AE=AD

    2t=60-4t

    解得t=10

    t=10时,四边形AEFD为菱形,

    故答案为:10

    3)当EDF=90°时,如图

    DFBCABBC

    四边形DFBE为矩形.

    AD=2AE,即60-4t=2t×2

    解得,t=

    DEF=90°时,如图

    DEAC

    AE=2AD,即2t=2×60-4t),

    解得,t=12

    综上所述,当t=12时,DEF为直角三角形.

    【点睛】本题考查了直角三角形的判定、平行四边形的判定与性质、菱形的判定、含30°角的直角三角形的性质等知识,熟练掌握直角三角形的判定和平行四边形的判定与性质是解题的关键.

    23.(2022·江苏宿迁·八年级统考期中)如图,在中,,点E是边AC的中点,的平分线ADBC于点D,作,连接DE并延长交AF于点F,连接FC

    (1)求证:

    (2)ABAC满足什么关系时,四边形ADCF是菱形?并说明理由.

    【答案】(1)见解析

    (2)时,四边形ADCF是菱形,见解析

     

    【分析】(1)由全等三角形的判定定理AAS证得AEF≌△CED

    2)根据(1)中的全等三角形的性质推出四边形ADCF是平行四边形,再证明AED≌△ABD,推出DFAC,即可证得结论.

    1

    证明:AFCD

    ∴∠AFECDE

    E是边AC的中点,

    AECE

    AFECDE中,

    ∴△AEF≌△CEDAAS);

    2

    解:当时,四边形ADCF是菱形.

    理由如下:由(1)知,AEF≌△CED

    AFCD

    AFCD

    四边形ADCF是平行四边形,

    ADBAC的平分线,

    ∴∠EADBAD

    AEAB

    AEDABD中,

    ∴△AED≌△ABDSAS),

    ∴∠AEDB90°

    DFAC

    四边形ADCF是菱形

    【点睛】本题考查菱形的判定、全等三角形的判定和性质等知识,熟练掌握对角线互相垂直的平行四边形是菱形是解决问题的关键.

    24.(2022·江苏盐城·八年级校联考阶段练习)在矩形ABCDCD边上取一点E,将BCE沿BE翻折,得到BFE

    (1)F恰好在AD上;

    如图1,若EBC15°,则DFE  

    如图2,过点FFOCDBE于点O,求证:四边形FOCE为菱形.

    (2)如图3ECD的运动过程中.

    ①∠ABF的角平分线交AD于点N,若BC=2ABAB=2AN时,请写出DEEC的数量关系,并说明理由;

    AB4BC7ABF的角平分线交EF的延长线于点MECD的过程中,直接写出M运动的路径长  

    【答案】(1)①∠DEF=60°见解析

    (2)①DE= EC,理由见解析;

     

    【分析】(1由翻折知FBC=30°,再根据平行线的性质得AFB=∠FBC=30°,从而得出答案;

    理由平行线的性质和翻折的性质可知OF=EF,从而得出OF=CE,证明四边形FOCE是平行四边形,再根据CE=EF,即可证明结论;

    2延长DG,使DG=CD,过点GGHBA,交BA的延长线于H,延长BNHGM,则四边形BCGH是正方形,设AN=x,则AB=2xBC=4xHM=2x,设DE=y,则CE=EF=2x-y,在RtMEG中,由勾股定理得,(2x2+2x+y2=4x-y2,从而得出xy的关系,进而解决问题;

    过点MHGAD,交CD延长线于GBA延长线于H,作MKADK,可证明四边形BCGH为正方形,则MK=3,当点ED重合时,DG=3,设HM=m,则GM=7-mMD=4+m,在RtMDG中,由勾股定理得,(4+m2=32+7-m2,解方程即可.

    【详解】(1)解:(1①∵BCE沿BE翻折,得到BFE

    ∴∠EBC=∠FBE=15°BFE=∠BCE=90°

    ∴∠FBC=30°

    ADBC

    ∴∠AFB=∠FBC=30°

    ∴∠DFE=180°-∠AFB-∠BFE=60°

    故答案为:60°

    ②∵BCE沿BE翻折,得到BFE

    CE=FECEB=∠FEB

    FOCE

    ∴∠FOE=∠CEO

    ∴∠FOE=∠FEO

    OF=EF

    OF=CE

    四边形OCEF是平行四边形,

    CE=EF

    四边形OCEF是菱形;

    2CE=2DE,理由如下:延长DG,使DG=CD,过点GGHBA,交BA的延长线于H,延长BNHGM

    则四边形BCGH是正方形,

    BC=2ABAB=2AN

    AN=x,则AB=2xBC=4xHM=2x

    BH=BC=BFBM=BM

    RtHBMRtFBMHL),

    HM=MF=2x

    DE=y,则CE=EF=2x-y

    RtMEG中,由勾股定理得,

    2x2+2x+y2=4x-y2

    解得y=x

    DE=xCE=x

    CE=2DE

    过点MHGAD,交CD延长线于GBA延长线于H,作MKADK

    则四边形BCGH为矩形,

    BM平分HBF

    ∴∠HBM=∠FBM

    ∵∠BHM=∠BFMBM=BM

    ∴△HBM≌△FBMAAS),

    HB=BF

    BC=BF

    BH=BC

    四边形BCGH为正方形,

    MK=3

    当点ED重合时,DG=3

    HM=m,则GM=7-mMD=4+m

    RtMDG中,由勾股定理得,

    4+m2=32+7-m2

    解得m=

    GM=7-=

    当点ECD的过程中,点M的运动路径是线段MG,长度为

    故答案为:

    【点睛】本题主要考查了是四边形综合,矩形的性质,翻折的性质,正方形的判定与性质,菱形的判定与性质,勾股定理等知识,运用勾股定理列方程并熟练掌握基本几何模型是解题的关键.

    相关试卷

    专题9.9正方形的性质专项提升训练(重难点 )- 2022-2023学年八年级数学下册 必刷题【苏科版】: 这是一份专题9.9正方形的性质专项提升训练(重难点 )- 2022-2023学年八年级数学下册 必刷题【苏科版】,文件包含专题99正方形的性质专项提升训练重难点培优-2022-2023学年八年级数学下册必刷题解析版苏科版docx、专题99正方形的性质专项提升训练重难点培优-2022-2023学年八年级数学下册必刷题原卷版苏科版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    专题9.7菱形的性质专项提升训练(重难点 )- 2022-2023学年八年级数学下册 必刷题【苏科版】: 这是一份专题9.7菱形的性质专项提升训练(重难点 )- 2022-2023学年八年级数学下册 必刷题【苏科版】,文件包含专题97菱形的性质专项提升训练重难点培优-2022-2023学年八年级数学下册必刷题解析版苏科版docx、专题97菱形的性质专项提升训练重难点培优-2022-2023学年八年级数学下册必刷题原卷版苏科版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    专题9.6矩形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册 必刷题【苏科版】: 这是一份专题9.6矩形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册 必刷题【苏科版】,文件包含专题96矩形的判定专项提升训练重难点培优-2022-2023学年八年级数学下册必刷题解析版苏科版docx、专题96矩形的判定专项提升训练重难点培优-2022-2023学年八年级数学下册必刷题原卷版苏科版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题9.8菱形的判定专项提升训练(重难点 )- 2022-2023学年八年级数学下册 必刷题【苏科版】
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map