人教版 八年级下册数学 同步复习 第5讲 勾股定理的应用 讲义
展开学生/课程 |
| 年级 | 8年级 | 学科 | 数学 |
授课教师 |
| 日期 |
| 时段 |
|
核心内容 | 勾股定理的应用2(第5讲) |
课程标准 |
1.掌握勾股定理的应用 2.熟练运用勾股定理 |
类型十一、勾股定理与无理数
例11.如图,△ABC的边BC在数轴上,点B对应的数字是1,点C对应的数字是2,∠ACB=90°,AC=2,以点B为圆心,AB为半径的圆弧交数轴于点D,则点D所表示的数为_________.
变式11-1 为了比较与+1的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=4,D在BC上,且CD=3,AC=1.通过计算可得__+1.(填“>”或“<”或“=”)
变式11-2如图,为原点,点,分别表示,2,以为底边在数轴上方作等腰三角形,连接,以为圆心,长为半径画弧,交数轴正半轴于点,若,则点表示的实数为__________.
类型十二、求梯子滑落的高度(勾股定理的应用)
例12.如图,斜靠在一面墙上的一根竹竿,它的顶端距离地面的距离为,底端远离墙的距离为,当它的顶端下滑时,底端在地面上水平滑行的距离是______.
变式12-1生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的,则梯子比较稳定,如图,AB为一长度为6米的梯子.
(1)当梯子稳定摆放时,它的顶端能达到5.7米高的墙头吗?(温馨提示:≈1.414)
(2)如图2,若梯子底端向左滑动使OD=3米,那么梯子顶端将下滑多少米?(结果保留1位小数)
变式12-2如图,一架梯子AB斜靠在一竖直的墙OA上,这时AO=3m,∠OAB=30°,梯子顶端A沿墙下滑至点C,使∠OCD=60°,同时,梯子底端B也外移至点D.求BD的长度.(结果保留根号)[补充:直角三角形中,30°所对的直角边是斜边的一半]
类型十三、求小鸟飞行的距离(勾股定理的应用)
例13.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?
变式13-1 如图,有两棵树,一棵高6m,另一棵高2m,两树相距5m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?(结果精确到0.1m)
变式13-2如图,校园内有两棵树,相距8米,一棵树树高米,另一棵树高米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少米?
类型十四、求大树折断前的高度(勾股定理的应用)
例14.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系,“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,∠ACB=90°,AC+AB=10尺,BC=4尺,求AC的长.
变式14-1如图,马路一边有一根长的电线杆被一辆货车从离地面处撞断裂,倒下的电线杆顶部是否会落在离它底部远的快车道上?说明理由.
变式14-2如图,在一棵大树AB的10m高的D处有两只猴子,它们同时发现地面上的点C处有一根香蕉,一只猴子从点D处上爬到树顶点A处,利用拉在点A处的滑绳AC,滑到点C处,另一只猴子从点D处滑到地面点B处,再由点B跑到点C,已知两只猴子所经过的路程都是15m,那么这棵树有多高?
类型十五、解决水杯中筷子问题(勾股定理的应用)
例15.如图,将一根长30cm的筷子,置于底面直径为10cm,高24cm的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h的取值范围是( )
A. B. C. D.
变式15-1如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池边,它的顶端恰好到达池边的水面,求水的深度是( )尺
A.8 B.10 C.13 D.12
变式15-2如图在平静的湖面上,有一支红莲,高出水面的部分为1米,一阵风吹来,红莲被吹到一边,花朵齐及水面(即),已知红莲移动的水平距离为3米,则湖水深为 ( )
A.米 B.3米 C.4米 D.12米
类型十六、解决航海问题(勾股定理的应用)
例16.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距( )
A.12海里 B.13海里 C.14海里 D.15海里
变式16-1如图,在一次测绘活动中,某同学站在点A的位置观测停放于B,C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为( )
A.1500m B.1200m C.1000m D.800m
变式16-2如图,一艘轮船以的速度从港口出发,向东北方向航行,另一艘轮船以的速度同时从港口出发,向东南方向航行,出发后,两船的距离是( )
A. B. C. D.
类型十七、求河宽(勾股定理的应用)
例17.如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上的点,测得BC =25m,AC=15m,则A,B两点间的距离是____m.
变式17-1如图,为修铁路需凿通隧道BC,测得∠C=90°,AB=5km,AC=4km,若每天凿隧道0.3km,则需_____天才能把隧道凿通.
变式17-2如图,某人欲从点A处入水横渡一条河,由于水流的影响,他实际上岸的地点C偏离欲到达的地点B200m,结果他在水中实际游了250m,求该河流的宽度为________m.
(变式17-1图) (变式17-2图)
类型十八、求台阶上地毯的长度(勾股定理的应用)
例18.某小区楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为20元,楼梯宽为2m,则购买这种地毯至少需要______元.
变式18-1如图,台阶阶梯每一层高,宽,长.一只蚂蚁从点爬到点,最短路程是____________.
变式18-2一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,AB,AC的夹角为θ(θ=30°).要在楼梯上铺一条地毯,已知CA=cm,楼梯宽1 cm,则地毯的面积至少需要______平方米.
(变式18-1图) (变式18-2图)
类型十九、判断是否受台风影响(勾股定理的应用)
例19.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,并且点与直线上的两点,的距离分别为,,又,以台风中心为圆心周围250km以内为受影响区域.
(1)求的度数;
(2)海港受台风影响吗?为什么?
变式19-1如图,在甲村到乙村的公路一旁有一块山地正在开发.现A处需要爆破,已知点A与公路上的停靠站B,C的距离分别为400 m和300 m,且ACAB.为了安全起见,如果爆破点A周围半径260 m的区域内不能有车辆和行人,问在进行爆破时,公路BC段是否需要暂时封闭?为什么?
变式19-2为了积极宣传防疫知识,某社区采用了移动车进行广播.如图,小明家在南街这条笔直公路MN的一侧点A处,小明家到公路MN的距离AB为600米,假使广播车P周围1000米以内能听到广播宣传,广播车P以400米/分的速度在公路MN上沿PN方向行驶时,假如小明此时在家,他是否能听到广播宣传?若能,请求出他总共能够听到多长时间的广播宣传?若不能,请说明理由.
类型二十、选扯到两点距离相等(勾股定理的应用)
例20.铁路上A、B两站(视为直线上的两点)相距25km,C,D为两村庄(视为两个点),于点A,于点B(如图).已知,,现在要在铁路AB上建一个土特产收购站E,使得C,D两村庄到收购站E的直线距离相等,请求出收购站E到A站的距离.
变式20-1 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”问题:小溪边长着两课棕榈树,恰好隔岸相望,一棵棕榈树CD高是6米,另外一棵AB高4米;AB与CD树干间的距离是10米.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标E.问:这条鱼出现的地方离比较高的棕榈树的树根C有多远?
变式20-2小渝和小川是一对好朋友,如图,小渝家住A,小川家住B.两家相距10公里,小渝家A在一条笔直的公路AC边上,小川家到这条公路的距离BC为6公里,两人相约在公路D处见面,且两家到见面地点D的距离相等,求小渝家A到见面地点D的距离.
1.如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是
A.20 B.25 C.30 D.32
2.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )
A.4米 B.5米 C.6米 D.7米
3.如图,有一块直角三角形纸片,两直角边,.现将直角边沿直线折叠,使它落在斜边上,且与重合,则等于( )
A. B. C. D.
4.如图,已知ABCD是长方形纸片,,在CD上存在一点E,沿直线AE将折叠,D恰好落在BC边上的点F处,且,则的面积是( ).
A. B. C. D.
5.如图所示:数轴上点A所表示的数为a,则a的值是( )
A.+1 B.-1 C.-+1 D.--1
6.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.
7.在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为_____.
8.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是____________.
9.如图,把长方形纸片沿折叠,使点落在边上的点处,点落在点处.
(1)试说明;
(2)设,,,试猜想,,之间的关系,并说明理由.
10.如图,把长方形沿AE对折后点D落在BC边的点F处,BC=5cm,AB=4cm,
求:(1)CF的长; (2)EF的长.
11.如图,△AOB,△COD是等腰直角三角形,点D在AB上,
(1)求证:△AOC≌△BOD; (2)若AD=3,BD=1,求CD.
12.如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音的影响,试问该校受影响的时间为多长?
人教版 八年级下册数学 同步复习 第1讲 二次根式 讲义: 这是一份人教版 八年级下册数学 同步复习 第1讲 二次根式 讲义,共10页。试卷主要包含了二次根式,代数式等内容,欢迎下载使用。
人教版 八年级下册数学 同步复习 第4讲 勾股定理概念及应用 讲义: 这是一份人教版 八年级下册数学 同步复习 第4讲 勾股定理概念及应用 讲义,共12页。试卷主要包含了勾股定理,用勾股定理理解直角三角形,两点距离公式,利用勾股定理求线段长,勾股数,勾股树中的面积问题,勾股定理解决网格问题,勾股定理与折叠问题等内容,欢迎下载使用。
人教版 八年级下册数学 同步复习 第8讲 中位线与矩形的性质及判定 讲义: 这是一份人教版 八年级下册数学 同步复习 第8讲 中位线与矩形的性质及判定 讲义,共15页。试卷主要包含了定理,已知等内容,欢迎下载使用。