![第16讲 斜面上的平抛运动模型及类平抛运动模型(解析版) 试卷01](http://img-preview.51jiaoxi.com/3/6/14133961/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第16讲 斜面上的平抛运动模型及类平抛运动模型(解析版) 试卷02](http://img-preview.51jiaoxi.com/3/6/14133961/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第16讲 斜面上的平抛运动模型及类平抛运动模型(解析版) 试卷03](http://img-preview.51jiaoxi.com/3/6/14133961/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
第16讲 斜面上的平抛运动模型及类平抛运动模型(解析版)
展开第16讲 斜面上的平抛运动模型及类平抛运动模型
一.知识总结
斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决。
1.从斜面上某点水平抛出,又落到斜面上的平抛运动的五个规律(推论)
(1)位移方向相同,竖直位移与水平位移之比等于斜面倾斜角的正切值。
(2)刚落到侧面时的末速度方向都平行,竖直分速度与水平分速度(初速度)之比等于斜面倾斜角正切值的2倍。
(3)运动的时间与初速度成正比。
(4)位移与初速度的二次方成正比。
(5)当速度与斜面平行时,物体到斜面的距离最远,且从抛出到距斜面最远所用的时间为平抛运动时间的一半。
2.常见的模型
模型 | |||
方法 | 分解速度,构建速度三角形,找到斜面倾角θ与速度方向的关系 | 分解速度,构建速度的矢量三角形 | 分解位移,构建位移三角形,隐含条件:斜面倾角θ等于位移与水平方向的夹角 |
基本 规律 | 水平:vx=v0 竖直:vy=gt 合速度: v= 方向:tanθ= | 水平:vx=v0 竖直:vy=gt 合速度: v= 方向:tanθ= | 水平:x=v0t 竖直:y=gt2 合位移: s= 方向:tanθ= |
运动 时间 | 由tanθ==得t= | 由tanθ==得t= | 由tanθ==得t= |
3.类平抛运动模型
(1)模型特点:
物体受到的合力恒定,初速度与恒力垂直,这样的运动叫类平抛运动。如果物体只在重力场中做类平抛运动,则叫重力场中的类平抛运动。学好这类模型,可为电场中或复合场中的类平抛运动打基础。
(2).类平抛运动与平抛运动的区别
做平抛运动的物体初速度水平,物体只受与初速度垂直的竖直向下的重力,a=g;
做类平抛运动的物体初速度不一定水平,但物体所受合力与初速度的方向垂直且为恒力,a=。
(3)求解方法
(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动。
(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a分解为ax、ay,初速度v0分解为vx、vy,然后分别在x、y方向上列方程求解。
(4)求解类平抛运动问题的关键
(1)对研究对象受力分析,找到物体所受合力的大小、方向,正确求出加速度。
(2)确定是研究速度,还是研究位移。
(3)把握好分解的思想方法,例题中研究位移,把运动分解成沿斜面的匀加速直线运动和水平方向的匀速直线运动,然后将两个方向的运动用时间t联系起来。
二.例题精讲
题型一:分解速度
例1.如图所示,以10m/s的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角为θ=30°的斜面上,g取10m/s2,这段飞行所用的时间为( )
A.s B.s C.s D.2s
【解答】解:物体做平抛运动,当垂直地撞在倾角为θ的斜面上时,把物体的速度分解如图所示,tanθ
代入数据解得:ts;
故ABD错误,C正确;
故选:C。
题型二:分解位移
例2.如图所示,小球以v0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t为(重力加速度为g)( )
A.v0tanθ B. C. D.
【解答】解:小球到达斜面的位移最小,可知位移的方向与斜面垂直,如图所示,
根据几何关系有:,
解得飞行的时间:t,故D正确,A、B、C错误。
故选:D。
题型三:分解速度与分解位移相结合
例3.如图所示,小球由倾角为45°的斜坡底端P点正上方某一位置Q处自由下落,下落至P点的时间为t1,若小球从同一点Q处以速度v0水平向左抛出,恰好垂直撞在斜坡上,运动时间为t2,不计空气阻力,则t1:t2等于( )
A.1:2 B.:1 C.1: D.1:
【解答】解:小球做平抛运动时,恰好能垂直落在斜坡上,有:
tan45°
又 vy=gt2,则得 t2
又 水平位移 s=v0t2
竖直位移 hQgt22
由上得到:
小球做自由落体运动时,由几何关系可知小球下落的高度为:
hQ+sgt12
联立以上各式解得:.故B正确,A、C、D错误。
故选:B。
题型四:类平抛运动
例(多选)4.如图所示,一光滑宽阔的斜面,倾角为θ,高为h.现有一小球在A处以水平速度v0射出,最后从B处离开斜面,下面说法中正确的是( )
A.小球的运动轨迹为抛物线
B.小球的加速度为gsinθ
C.小球到达B点的时的速度为
D.小球到达B点时小球的水平位移为
【解答】解:A、小球受重力和支持力两个力作用,合力沿斜面向下,与初速度垂直,做类平抛运动,轨迹为抛物线。故A正确。
B、根据牛顿第二定律知,小球的加速度agsinθ.故B正确。
C、根据机械能守恒定律,则有:,解得:v.故C错误。
D、小球在沿斜面方向上的位移为,根据at2,解得t;
在水平方向上做匀速直线运动,x=v0t.故D正确。
故选:ABD。
题型五:空气阻力不能忽略的曲线运动
例(多选)5.如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响下落的速度和滑翔的距离。某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向的速度,其v﹣t图象如图(b)所示,t1和t2是他落在倾斜雪道上的时刻。则( )
A.第二次滑翔过程中在竖直方向上的位移比第一次的小
B.第二次滑翔过程中在水平方向上的位移比第一次的大
C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大
D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大
【解答】解:A、根据图象与时间轴所围图形的面积表示竖直方向上位移的大小可知,第二次滑翔过程中的位移比第一次的位移大,故A错误;
B、由图象知,第二次的运动时间大于第一次运动的时间,由于第二次竖直方向下落距离大,合位移方向不变,所以第二次滑翔过程中在水平方向上的位移比第一次的大,故B正确;
C、由图象知,第二次滑翔时的竖直方向末速度小,运动时间长,据加速度的定义式可知其平均加速度小,故C错误;
D、当竖直方向速度大小为v1时,第一次滑翔时图象的斜率大于第二次滑翔时图象的斜率,而图象的斜率表示加速度的大小,故第一次滑翔时速度达到v1时加速度大于第二次时的加速度,据mg﹣f=ma可得阻力大的加速度小,故第二次滑翔时的加速度小,故其所受阻力大,故D正确。
故选:BD。
三.举一反三,巩固练习
- 如图所示,将一个小球从A点以速度v1水平抛出,小球垂直落在倾角为θ的斜面上P点,若将小球抛出点移到图中的B点速度v2以水平抛出后小球垂直落在斜面上的Q点(图中未标出),下列说法正确的是( )
A.Q点在斜面上P点下方
B.Q点在斜面上可能与P点重合
C.水平初速度v2一定大于v1
D.两次小球落在斜面上动能可能相等
【解答】解:AB、小球两次都垂直打在斜面上,则小球末速度方向与初速度之间夹角不变,即平抛运动位移偏转角不变,
根据图示,第一次平抛运动位移xAP,平行于第二次平抛运动位移xBQ,如图所示
Q点在斜面上P点上方,故AB错误;
C、小球两次都垂直打在斜面上,则小球末速度方向与竖直分速度之间有
竖直速度
代入可得
因hB>hA,则v2>v1,故C正确;
D、小球从A到P重力做功,小球的动能增加,得
小球从B到Q,重力做功,小球的动能增加,得
因为v2>v1,hB>hA,则mghB>mghA
所以EKB>EKA,故D错误;
故选:C。
- 如图所示,长木板AB倾斜放置,板面与水平方向的夹角为θ,在板的A端上方P点处,以大小为v0的水平初速度向右抛出一个小球,结果小球恰好能垂直打在板面上。现让板绕A端顺时针转过一个角度到图上虚线的位置,要让球从P点水平抛出后仍能垂直打在板面上,则水平位移x及抛出的水平速度v(不计空气阻力)( )
A.x变大,v大于v0 B.x变小,v小于v0
C.x变大,v等于v0 D.x变化不确定,v小于v0
【解答】解:设板与水平方向的夹角为θ,将速度进行分解如图所示:
根据几何关系可得:v0=vytanθ=gt•tanθ,
水平方向有:x=v0t,则:t,
代入整理可得:gx•tanθ
对木板进行分析,如图
设AP的距离为H,则有:H=y+xtanθ
由平抛运动的性质可得:,又有:,可得:y
联立可得:x
由数学知识可知:当时,即tanθ时,取最大值,则x存在最小值,所以当θ发生变化后,x的变化不确定;
由前述结论:gx•tanθ,可得:
由题意知θ减小,则tanθ变小、故初速度v0减小,即v<v0,故D正确,ABC错误。
故选:D。
- 如图所示,某同学将一乒乓球水平抛出,乒乓球以5.0m/s的速度垂直打在斜面上,之后乒乓球以4.0m/s的速度垂直斜面弹回,已知乒乓球与斜面相互作用的时间为0.2s,则乒乓球与斜面作用过程中,乒乓球的加速度为( )
A.5.0m/s2,方向垂直斜面向下
B.5.0m/s2,方向垂直斜面向上
C.45m/s2,方向垂直斜面向下
D.45m/s2,方向垂直斜面向上
【解答】解:规定乒乓球垂直打在斜面上瞬间速度的方向为正方向,
根据加速度定义式,可得,
负号表示加速度的方向与垂直打在斜面上瞬间初速度的方向相反,即加速度方向垂直斜面向上。故ABC错误,D正确。
故选:D。
- 如图所示,质量为m的小球以v0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则小球落到斜面时重力的瞬时功率为(重力加速度为g)( )
A. B.2mgv0tanθ C. D.mgv0tanθ
【解答】解:小球到达斜面的位移最小,可知位移的方向与斜面垂直,如图所示,
根据几何关系有:
解得飞行的时间:,
小球竖直方向的速度为vy,
故小球落到斜面时重力的功率为P=mgvy,
故A正确,BCD错误。
故选:A。
- 如图所示,从倾角为θ斜面足够长的顶点A,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v1,球落到斜面上前一瞬间的速度方向与斜面的夹角为α1,第二次初速度为v2,球落在斜面上前一瞬间的速度方向与斜面间的夹角为α2,则( )
A.α1>α2,v1>v2 B.α1<α2,v1<v2
C.α1=α2,v1>v2 D.α1=α2,v1<v2
【解答】解:如图所示,由平抛运动的规律知
lsinθgt2,lcosθ=v0t,解得:t,
由图知tan(α+θ)2tanθ,
所以α与抛出速度v0无关,故α1=α2;
小球做平抛运动,h,可知第二次的时间较大,水平位移x=v0t,tanθ,
解得:t,可知第二次的初速度v2较大,故D正确,ABC错误。
故选:D。
- 将一挡板倾斜地固定在水平面上,倾角θ=37°,如图.现有质量为m的小球由挡板上方的A点以初速度v0水平向右抛出,不计空气阻力,经过1s恰好垂直落在挡板上的B点,取g=10m/s2,求:
(1)初速度v0的大小;
(2)A、B两点的高度差与水平间距之比.
【解答】解:小球在碰撞挡板前做平抛运动,设刚要碰撞斜面时小球速度为v,由题意知速度v的方向与竖直方向的夹角为37°,如图,
(1)将B点的速度分解,在竖直方向vy=gt=10m/s,
又知,
解得v0=vx=7.5m/s。
(2)A、B两点的高度差与水平间距之比:。
答:(1)初速度v0的大小为7.5m/s;
(2)A、B两点的高度差与水平间距之比为。
- 如图所示,阁楼横截面为等腰直角三角形ABC,屋顶距水平楼面高度为H,从屋顶正下方距离阁楼地面某一高处向横截面内水平抛出一小球,重力加速度为g。
(1)若小球距离地面h处抛出,求不碰屋面运动的时间是多少?
(2)若小球能落在A处,求小球抛出位置的最大高度?
【解答】解:(1)由平抛运动公式:
代入数据,可得:
t
(2)当运动轨迹与AC相切时,此时小球抛出为最大高度,由几何关系可知竖直速度和水平速度相等,水平位移大小为H,则满足:
vy=gt1=vx,x=H=vxt1
联立,可得:
则最大高度为:
答:(1)若小球距离地面h处抛出,求不碰屋面运动的时间是。
(2)若小球能落在A处,小球抛出位置的最大高度为
- 跑酷(Pakour)是时下风靡全球的时尚极限运动,一跑酷运动员在一次训练中的运动可简化为以下运动:运动员首先在平直高台上以4m/s2的加速度从静止开始匀加速运动,运动8m的位移后,在距地面高为5m的高台边缘水平跳出,在空中调整姿势后恰好垂直落在一倾角为53°的斜面中点位置。此后运动员迅速调整姿势沿水平方向蹬出,假设该运动员可视为质点,不计空气阻力,取重力加速度g=10m/s2,sin53°=0.8,cos53°=0.6,求:
(1)运动员从楼顶边缘跳出到落到斜面上所用的时间t;
(2)该斜面底端与高台边缘的水平距离s;
(3)若运动员水平蹬出斜面后落在地面上,求运动员的蹬出速度范围。
【解答】解:(1)设运动员从高台边缘水平跳出的速度为v0,匀加速的位移为l,
由速度﹣位移公式得:2al
代入数据解得:v0=8m/s
恰好垂直落在一倾角为53°的斜面中点位置时,由运动的合成与分解得:
tan53°
代入数据解得运动员从楼顶边缘跳出到落到斜面上所用的时间为:t=0.6s
(2)设高台距斜面中点的水平距离为x,水平方向上有:x=v0t=8×0.6m=4.8m
竖直方向上,有:ym=1.8m
则斜面中点距地面竖直距离为:h=H﹣y=5m﹣1.8m=3.2m
斜面中点距斜面底端水平距离为:x′m=2.4m
该斜面底端与高台边缘的水平距离s:s=x﹣x′=4.8m﹣2.4m=2.4m
(3)根据位移﹣时间公式,可得运动员水平蹬出斜面后落在地面上的时间为:
t′s=0.8s
能落到地面上,水平位移的范围为:2.4m≤x′≤4.8m
根据运动学公式得:x′=v0′t′
代入数据解得运动员的蹬出速度范围为:3m/s≤v0′≤6m/s
答:(1)运动员从楼顶边缘跳出到落到斜面上所用的时间t为0.6s;
(2)该斜面底端与高台边缘的水平距离s为2.4m;
(3)若运动员水平蹬出斜面后落在地面上,运动员的蹬出速度范围为3m/s≤v0′≤6m/s。
- 如图所示,倾角为θ的斜面体固定在水平面上,两个可视为质点的小球甲、乙分别沿水平方向抛出,两球的初速度大小均为v0,已知甲的抛出点为斜面体的顶点,小球乙落在斜面上时的速度与斜面垂直。设两球落在斜面上的A、B两点后不再反弹,忽略空气阻力,重力加速度为g。求:
(1)甲球在空中运动的时间t;
(2)乙球在空中运动的时间t′;
(3)甲、乙两球落在斜面上瞬间的速度方向与水平方向夹角的正切值之比。
【解答】解:(1)甲球在空中做平抛运动,甲球落在斜面上时,有
tanθ
可得t
(2)乙球在空中做平抛运动,小球乙落在斜面上时的速度与斜面垂直,则
tanθ
可得t′
(3)甲球落在斜面上瞬间的速度方向与水平方向夹角的正切值为
tanα甲
故tanα甲=2tanθ
乙球落在斜面上瞬间的速度方向与水平方向夹角的正切值为
tanα乙
故tanα甲:tanα乙=2tan2θ:1
答:(1)甲球在空中运动的时间t是;
(2)乙球在空中运动的时间t′是;
(3)甲、乙两球落在斜面上瞬间的速度方向与水平方向夹角的正切值之比是2tan2θ:1。
- 如图所示,某同学想制作一个简易水轮机,让水从水平放置的水管流出,水流轨迹与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动。当该装置工作稳定时,可近似认为水到达轮子边缘时的速度与轮子边缘的线速度相同。调整轮轴O的位置,使水流与轮边缘切点对应的半径与水平方向成θ=37°角。测得水从管口流出速度v0=6m/s,轮子半径R=0.4m,已知sin37°=0.6,cos37°=0.8,g=10m/s2。求:
(1)轮子转动的角速度大小;
(2)水管的出水口到轮轴O的水平距离。
【解答】解:(1)水做平抛运动,水到达轮子边缘时速度如图所示
轮子边缘的线速度大小vm/s=10m/s
轮子转动角速度rad/s=25rad/s
(2)水到达轮子边缘时的竖直分速度vym/s=8m/s
水做平抛运动,设运动时间为t,水平分位移:x=v0t
竖直分速度:vy=gt
水管出水口距轮轴O水平距离:l=x﹣Rcos37°
代入数据解得:l=4.48m
答:(1)轮子转动的角速度大小是25rad/s;
(2)水管的出水口到轮轴O的水平距离是4.48m。
新高考物理一轮复习刷题练习第16讲 斜面上的平抛运动模型及类平抛运动模型(含解析): 这是一份新高考物理一轮复习刷题练习第16讲 斜面上的平抛运动模型及类平抛运动模型(含解析),共17页。试卷主要包含了常见的模型,如图等内容,欢迎下载使用。
第16讲 斜面上的平抛运动模型及类平抛运动模型(原卷版): 这是一份第16讲 斜面上的平抛运动模型及类平抛运动模型(原卷版),共9页。试卷主要包含了常见的模型,如图等内容,欢迎下载使用。
第15讲 多体平抛运动模型(原卷版): 这是一份第15讲 多体平抛运动模型(原卷版),共9页。试卷主要包含了性质,研究方法等内容,欢迎下载使用。