2023年高考数学大题专练(新高考专用) 专题14 圆锥曲线中的定值定点问题 Word版含解析
展开专题14 圆锥曲线中的定值定点问题
1.(2022·全国·高考真题(文))已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
2.(2021·全国·高考真题)已知椭圆C的方程为,右焦点为,且离心率为.
(1)求椭圆C的方程;
(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.
3.(2022·青海·海东市第一中学模拟预测(理))已知椭圆M:(a>b>0)的离心率为,AB为过椭圆右焦点的一条弦,且AB长度的最小值为2.
(1)求椭圆M的方程;
(2)若直线l与椭圆M交于C,D两点,点,记直线PC的斜率为,直线PD的斜率为,当时,是否存在直线l恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.
4.(2022·上海松江·二模)已知椭圆的右顶点坐标为,左、右焦点分别为、,且,直线交椭圆于不同的两点和.
(1)求椭圆的方程;
(2)若直线的斜率为,且以为直径的圆经过点,求直线的方程;
(3)若直线与椭圆相切,求证:点、到直线的距离之积为定值.
5.(2022·上海浦东新·二模)已知分别为椭圆:的左、右焦点, 过的直线交椭圆于两点.
(1)当直线垂直于轴时,求弦长;
(2)当时,求直线的方程;
(3)记椭圆的右顶点为T,直线AT、BT分别交直线于C、D两点,求证:以CD为直径的圆恒过定点,并求出定点坐标.
6.(2022·上海长宁·二模)已知分别为椭圆的上、下顶点,是椭圆的右焦点,是椭圆上异于的点.
(1)若,求椭圆的标准方程
(2)设直线与轴交于点,与直线交于点,与直线交于点,求证:的值仅与有关
(3)如图,在四边形中,,,若四边形面积S的最大值为,求的值.
7.(2022·福建省福州格致中学模拟预测)圆:与轴的两个交点分别为,,点为圆上一动点,过作轴的垂线,垂足为,点满足
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,直线交于,两点,直线与交于点,试问:是否存在一个定点,当变化时,为等腰三角形
8.(2022·全国·模拟预测)已知椭圆的离心率为,椭圆C的左、右顶点分别为A,B,上顶点为D,.
(1)求椭圆C的方程;
(2)斜率为的动直线l与椭圆C相交于M,N两点,是否存在定点P(直线l不经过点P),使得直线PM与直线PN的倾斜角互补,若存在这样的点P,请求出点P的坐标;若不存在,请说明理由.
9.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知椭圆的两个焦点分别为和,椭圆上一点到和的距离之和为,且椭圆的离心率为.
(1)求椭圆的方程;
(2)过左焦点的直线交椭圆于、两点,线段的中垂线交轴于点(不与重合),是否存在实数,使恒成立?若存在,求出的值;若不存在,请说出理由.
10.(2022·河南安阳·模拟预测(文))已知椭圆上一个动点N到椭圆焦点的距离的最小值是,且长轴的两个端点与短轴的一个端点B构成的的面积为2.
(1)求椭圆C的标准方程;
(2)如图,过点且斜率为k的直线l与椭圆C交于P,Q两点.证明:直线与直线的交点T在定直线上.
11.(2022·安徽省舒城中学三模(理))已知椭圆,过原点的直线交该椭圆于,两点(点在轴上方),点,直线与椭圆的另一交点为,直线与椭圆的另一交点为.
(1)若是短轴,求点C坐标;
(2)是否存在定点,使得直线恒过点?若存在,求出的坐标;若不存在,请说明理由.
12.(2022·广东茂名·二模)已知圆O:x2+y2=4与x轴交于点,过圆上一动点M作x轴的垂线,垂足为H,N是MH的中点,记N的轨迹为曲线C.
(1)求曲线C的方程;
(2)过作与x轴不重合的直线l交曲线C于P,Q两点,设直线AP,AS的斜率分别为k1,k2.证明:k1=4k2.
13.(2022·安徽·合肥市第八中学模拟预测(文))生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C的焦点在y轴上,中心在坐标原点,从下焦点射出的光线经过椭圆镜面反射到上焦点,这束光线的总长度为4,且反射点与焦点构成的三角形面积最大值为,已知椭圆的离心率e.
(1)求椭圆C的标准方程;
(2)若从椭圆C中心O出发的两束光线OM、ON,分别穿过椭圆上的A、B点后射到直线上的M、N两点,若AB连线过椭圆的上焦点,试问,直线BM与直线AN能交于一定点吗?若能,求出此定点:若不能,请说明理由.
14.(2022·全国·模拟预测)设椭圆的右焦点为F,左顶点为A.M是C上异于A的动点,过F且与直线AM平行的直线与C交于P,Q两点(Q在x轴下方),且当M为椭圆的下顶点时,.
(1)求椭圆C的标准方程;
(2)设点S,T满足,,证明:平面上存在两个定点,使得T到这两定点距离之和为定值.
15.(2022·上海交大附中模拟预测)已知椭圆是左、右焦点.设是直线上的一个动点,连结,交椭圆于.直线与轴的交点为,且不与重合.
(1)若的坐标为,求四边形的面积;
(2)若与椭圆相切于且,求的值;
(3)作关于原点的对称点,是否存在直线,使得上的任一点到的距离为,若存在,求出直线的方程和的坐标,若不存在,请说明理由.
16.(2022·全国·模拟预测(理))已知椭圆:的右顶点为A,上顶点为,直线的斜率为,原点到直线的距离为.
(1)求的方程;
(2)直线交于,两点,,证明:恒过定点.
17.(2022·全国·模拟预测(理))已知椭圆的左、右焦点分别为,,,分别为左、右顶点,,分别为上、下顶点.若四边形的面积为,且,,成等差数列.
(1)求椭圆的标准方程;
(2)过椭圆外一点(不在坐标轴上)连接,,分别与椭圆交于,两点,直线交轴于点.试问:,两点横坐标之积是否为定值?若为定值,求出定值;若不是,说明理由.
18.(2022·山西·太原五中二模(文))已知椭圆,过原点的两条直线和分别与椭圆交于和,记得到的平行四边形的面积为.
(1)设,用的坐标表示点到直线的距离,并证明;
(2)请从①②两个问题中任选一个作答
①设与的斜率之积,求面积的值.
②设与的斜率之积为.求的值,使得无论与如何变动,面积保持不变.
19.(2022·福建·厦门一中模拟预测)已知,分别是椭圆的右顶点和上顶点,,直线的斜率为.
(1)求椭圆的方程;
(2)直线,与,轴分别交于点,,与椭圆相交于点,.证明:
(i)的面积等于的面积;
(ii)为定值.
20.(2022·北京市第十二中学三模)已知椭圆过点,离心率为.
(1)求椭圆M的方程;
(2)已知直线在x轴上方交椭圆M于B,C(异于点A)两个不同的点,直线AB,AC分别与y轴交于点P、Q,O为坐标原点,求的值.
专题06 椭圆中的定点、定值、定直线问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用): 这是一份专题06 椭圆中的定点、定值、定直线问题-备战2024年新高考数学之圆锥曲线专项高分突破(新高考专用),文件包含专题06椭圆中的定点定值定直线问题原卷版docx、专题06椭圆中的定点定值定直线问题解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
专题14 圆锥曲线中的定值定点问题-备战2024年高考数学复习大题全题型专练: 这是一份专题14 圆锥曲线中的定值定点问题-备战2024年高考数学复习大题全题型专练,文件包含专题14圆锥曲线中的定值定点问题解析版docx、专题14圆锥曲线中的定值定点问题原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
2023年高考数学大题专练专题14圆锥曲线中的定值定点问题试题含解析: 这是一份2023年高考数学大题专练专题14圆锥曲线中的定值定点问题试题含解析,共37页。试卷主要包含了已知分别为椭圆等内容,欢迎下载使用。