专题12月球登陆与返回模型-高考物理万有引力与航天常用模型最新模拟题精练
展开高考物理《万有引力与航天》常用模型最新模拟题精练
专题12.月球登录和返回模型
二.计算题
1. (2022湖南永州三模)嫦娥五号探月器成功登陆月球并取回月壤,成为中国的骄做。登月取壤过程可简化:着陆器与上升器组合体随返回器和轨道器组合体绕月球做半径为3R的圆轨道运行;当它们运动到轨道的A点时,着陆器与上升器组合体被弹离,返回器和轨道器组合体速度变大沿大椭圆轨道运行;着陆器与上升器组合体速度变小沿小椭圆轨道运行半个周期登上月球表面的B点,在月球表面工作一段时间后,上开器经快速启动从B点沿原小椭圆轨道运行半个周期回到分离点A与返回器和轨道器组合体实现对接,如图所示。己知月球半径为R、月球表面的重力加速度为。
(1)求返回器与轨道器、着陆器与上升器的组合体一起在圆轨道上绕月球运行的周期T;
(2)若返回器和轨道器组合体运行的大椭圆轨道的长轴为8R,为保证上升器能顺利返回A点实现对接,求上升器在月球表面停留的时间t。
、2、3、…)
2.(18分)(2021天津市河东区一模)嫦娥五号成功实现月球着陆和返回,鼓舞人心,小明知道月球上没有空气,无法靠降落伞减速降落,于是设计了一种新型着陆装置。如图所示,该装置由船舱、间距为l的平行导轨、产生垂直船舱导轨平面的磁感应强度大小为B的匀强磁场的磁体和“∧”型刚性线框组成,“∧”型线框ab边可沿导轨滑动并接触良好。船舱、导轨和磁体固定在起,总质量为m1,整个装置竖直着陆到月球表面前瞬间的速度大小为v0,接触月球表面后线框速度立即变为零。经过减速,在导轨下方缓冲弹簧接触月球表面前船舱已可视为匀速。已知船舱电阻为3r,“∧”型线框的质量为m2,其7条边的边长均为l,每边电阻均为r;月球表面的重力加速度为。整个运动过程中只有ab边在磁场中,线框与月球表面绝缘,不计导轨电阻和摩擦阻力。
(1)求着陆装置接触到月球表面后瞬间线框ab边产生的电动势E0;
(2)面出等效电路图,并求着陆装置接触到月球表面后瞬间流过线框ab边的电流l0;
(3)求船舱匀速运动时的速度大小v;
(4)同桌小张认为在磁场上方、两导轨之间连接一个电容为C的电容器,在着陆减速过程中还可以回收部分能量,在其他条件均不变的情況下,求船舱匀速运动时的速度大小v‘和此时电容器所带电荷量q。
3. (2021福建龙岩一模) 嫦娥五号任务的圆满完成,标志着我国航天事业发展中里程碑式的新跨越。嫦娥五号从地面发射后进入地月转移轨道,再经过变轨后进入绕月圆形轨道,已知圆形轨道距月球表面高度为h,月球半径为R,月球表面重力加速度为g0。求
(1)月球质量M;
(2)探测器在圆轨道上运动的线速度v大小。
4.(11分)(2021湖南娄底高一期中)2007年10月24日,“嫦娥一号”探月卫星发射升空,实现了中华民族千年奔月的梦想。2007年10月31日,“嫦娥一号”探月卫星在近地点600km处通过发动机短时点火,实施变轨。变轨后卫星从远地点高度12万余公里的椭圆轨道进入远地点高度37万余公里的椭圆轨道,直接奔向月球。已知地球质量大约是月球质量的81倍,地球半径大约是月球半径的4倍,地球的第一宇宙速度是7.9km/s。求:
(1)“嫦娥一号”奔向月球的过程中,“嫦娥一号”控月卫星通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心与到地球中心的距离之比是多少?
(2)如果在月球表面发射月球的卫星,求卫星的第一宇宙速度是多少。
5.(2022河北石家庄重点高中月考)“神舟五号”飞船完成了预定的空间科学和技术试验任务后,返回舱开始从太空向地球表面按预定轨道返回,返回舱开始时通过自身制动发动机进行调控减速下降,穿越大气层后,在一定的高度打开阻力降落伞进一步减速下降,这一过程中若返回舱所受空气摩擦阻力与速度的平方成正比,比例系数(空气阻力系数)为k,所受空气浮力恒定不变,且认为竖直降落,从某时刻开始计时,返回舱的速度——时间图象如下图中的AD曲线所示,图中AB是曲线在A点的切线,切线交于横轴一点B,其坐标为(8,0),CD是曲线AD的渐近线,假如返回舱总质量为M=400kg,重力加速度g取10m/s2。
试问:
(1)返回舱在这一阶段是怎样运动的;
(2)在t=0时,返回舱的加速度多大;
(3)计算阻力系数k。(结果保留两位小数)
6. (2021北京丰台期末) 2020年11月24日,我国“嫦娥五号”探测器成功发射并进入地月转移轨道。28日 “嫦娥五号”在图甲B处成功实施近月制动,进入环月椭圆轨道,月球在椭圆轨道的焦点上;29日探测器在椭圆轨道的近月点A处再次“刹车”,进入环月圆轨道(图甲没有按实际比例画图)。研究探测器在椭圆轨道上的运动可以按照以下思路进行:对于一般的曲线运动,可以把这条曲线分割为许多很短的小段,质点在每小段的运动都可以看作圆周运动的一部分,其半径称为曲线在某点的曲率半径。图乙中最大内切圆的半径ρ即为曲线在P点的曲率半径,图甲中椭圆在A点和B点的曲率半径,rA为A点到月球球心的距离,rB为B点到月球球心的距离。已知月球质量为M,引力常量为G。
(1)求探测器在环月圆轨道1上运行时线速度v1的大小;
(2)证明探测器在椭圆轨道2上运行时,在近月点A和远月点B的线速度大小满足:vA·rA=vB·rB;
(3)某同学根据牛顿运动定律分析得出:质量为m的探测器在圆轨道1和椭圆轨道2上经过A点时的加速度a1、a2均满足= ma,因此a1=a2。请你利用其它方法证明上述结论。(若规定两质点相距无限远时引力势能为零,则质量分别为m1和m2的两个质点相距r时的引力势能Ep=。)
7. (8分) (2020北京高考模拟1)“嫦娥一号”探月卫星在空中的运动可简化为如图17所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道。已知卫星在停泊轨道和工作轨道运行的半径分别为R和R1,地球半径为r,月球半径为r1,地球表面重力加速度为g,月球表面重力加速度为。求:
(1)卫星在停泊轨道上运行时的线速度大小;
(2)卫星在工作轨道上运行的周期。
(1)r (2)
8. 2018年12月8日,嫦娥四号月球探测器在西昌卫星发射中心发射升空。于2019年1月3日在月球上空悬停、平移、避障,选择最佳着陆点、最后安全降落月球表面。这是人类首次在月球背面软着陆。
(1)嫦娥四号组合体(月球车和着陆器)在月球表面附近处开始悬停,若悬停时,嫦娥四号组合体水平和竖直速度大小均为零,推力发动机产生竖直方向大小为F的推力,已知月球车质量为m1,着陆器质量为m2,求月球表面的重力加速度大小;
(2)若已知月球半径为R,万有引力常量为G,利用以上物理量求月球质量M;
(3)2019年1月14日,国务院新闻办公室召开的新闻发布会上宜布,嫦娥五号将于2019年年底前后发射,实现区域软着陆并采样返回。如图所示,将月球车由月球表面发射到h高度的轨道上,在该轨道月球车与绕月球做圆周运动的飞船对接,然后由飞船送月球车返回地球。若以月球表面为零势能面,月球车在h高度的引力势能可表示为,其中G为引力常量,M为月球质量,m为月球车质量,R为月球半径,若忽略月球的自转,求从月球表面开始发射到对接完成需要对月球车做的功。
9.(2023四川遂宁名校联考)“嫦娥四号”飞船在月球背面着陆过程如下:在反推火箭作用下,飞船在距月面100米处悬停,通过对障碍物和坡度进行识别,选定相对平坦的区域后,开始以a=2m/s2垂直下降。当四条“缓冲脚”触地时,反推火箭立即停止工作,随后飞船经2s减速到0,停止在月球表面上。飞船质量m=1000kg,每条“缓冲脚”与地面的夹角为60°,月球表面的重力加速度g=3.6m/s2,四条缓冲脚的质量不计。求:
(1)飞船垂直下降过程中,火箭推力对飞船做了多少功;
(2)从反冲脚触地到飞船速度减为0的过程中,每条“缓冲脚”对飞船的冲量大小。
10. 2018年12月8日,嫦娥四号月球探测器在西昌卫星发射中心发射升空。于2019年1月3日在月球上空悬停、平移、避障,选择最佳着陆点、最后安全降落月球表面。这是人类首次在月球背面软着陆。
(1)嫦娥四号组合体(月球车和着陆器)在月球表面附近处开始悬停,若悬停时,嫦娥四号组合体水平和竖直速度大小均为零,推力发动机产生竖直方向大小为F的推力,已知月球车质量为m1,着陆器质量为m2,求月球表面的重力加速度大小;
(2)若已知月球半径为R,万有引力常量为G,利用以上物理量求月球质量M;
(3)2019年1月14日,国务院新闻办公室召开的新闻发布会上宜布,嫦娥五号将于2019年年底前后发射,实现区域软着陆并采样返回。如图所示,将月球车由月球表面发射到h高度的轨道上,在该轨道月球车与绕月球做圆周运动的飞船对接,然后由飞船送月球车返回地球。若以月球表面为零势能面,月球车在h高度的引力势能可表示为,其中G为引力常量,M为月球质量,m为月球车质量,R为月球半径,若忽略月球的自转,求从月球表面开始发射到对接完成需要对月球车做的功。
11. 2019年1月3日。我国“嫦娥四号“探测器在月球背面成功着陆。着陆时,“嫦娥四号”从距月面H=7km沿竖直方向匀减速降落至距月面h=100m处,悬停t0=8s,然后以v1=1.2m/s的平均速度竖直降落至距月面h0=4m处关闭发动机。关闭发动机后,嫦娥四号以v2=0.37m/s的初速度自由降落至月面,整个过程所用的时间t=330s。已知在匀减速过程中“嫦娥四号”发动机向下喷出燃料的速度v2=3000m/s,“嫦娥四号”的质量m=4.0t(忽略其质量变化),地球表面的重力加速度为g=9.8m/s2,地球质量为月球质量的81倍,地球半径为月球半径的3.67倍,求:
(1)月球表面的重力加速度g月的大小(结果保留三位有效数字);
(2)从距月面7km降落至距月面100m过程中,“嫦娥四号”的加速度大小(结果保留两位有效数字);
(3)从距月面7km降落至距月面100m的过程中“嫦娥四号”发动机每秒喷出燃料的质量m0(结果保留两位有效数字)。
12 如图所示,为某月球探测器在月面软着陆的最后阶段的运动示意图。探测器原来悬停在A点,为避开正下方B处的障碍物,探测器需先水平运动到C点,再沿CD竖直下降,到达D点时速度变为0,此后探测器关闭所有发动机,在自身重力作用下自由下落至月面E点。已知月球表面重力加速度g = 1.62 m/s2,AC =1.6 m,CD = 26 m,DE = 4 m。探测器在A点时质量m = 1000 kg,从C点运动到D点所用时间为15 s。探测器主发动机M竖直向下喷气,可产生0 ~ 7500 N的变推力,辅助发动机P、Q分别水平向左、水平向右喷气,产生的推力恒为400 N,所有发动机喷出的气体相对探测器的速度大小均为u = 2000 m/s,且发动机的推力F与喷气速度u、秒流量Q(单位时间内喷出的气体质量)满足F = u·Q。探测器在如图所示的整个过程中所消耗的燃料质量Δm << m。求:
(1)探测器着陆前瞬间的速度;
(2)探测器从C点运动到D点过程中所消耗的燃料质量Δm1;
(3)探测器从A点运动到C点过程消耗的燃料质量(即喷出的气体质量)Δm2的最小值。
13.(9分)(2023浙江稽阳联考模拟)2019年1月4日上午10时许,科技人员在北京航天飞行控制中心发出指令,嫦娥四号探测器在月面上空开启发动机,实施降落任务。在距月面高为H=102m处开始悬停,识别障碍物和坡度,选定相对平坦的区域后,先以a1匀加速下降,加速至v1=4ms/时,立即改变推力,以a2=2m/s2匀减速下降,至月表高度30m处速度减为零,立即开启自主避障程序,缓慢下降。最后距离月面2.5m时关闭发动机,探测器以自由落体的方式降落,自主着陆在月球背面南极艾特肯盆地内的冯•卡门撞击坑中,整个过程始终垂直月球表面作直线运动,取竖直向下为正方向。已知嫦娥四号探测器的质量m=40kg,月球表面重力加速度为1.6m/s2.求:
(1)嫦娥四号探测器自主着陆月面时的瞬时速度大小v2;
(2)匀加速直线下降过程的加速度大小a1;
(3)匀加速直线下降过程推力F的大小和方向。
14. (2021北京丰台期末) 2020年11月24日,我国“嫦娥五号”探测器成功发射并进入地月转移轨道。28日 “嫦娥五号”在图甲B处成功实施近月制动,进入环月椭圆轨道,月球在椭圆轨道的焦点上;29日探测器在椭圆轨道的近月点A处再次“刹车”,进入环月圆轨道(图甲没有按实际比例画图)。研究探测器在椭圆轨道上的运动可以按照以下思路进行:对于一般的曲线运动,可以把这条曲线分割为许多很短的小段,质点在每小段的运动都可以看作圆周运动的一部分,其半径称为曲线在某点的曲率半径。图乙中最大内切圆的半径ρ即为曲线在P点的曲率半径,图甲中椭圆在A点和B点的曲率半径,rA为A点到月球球心的距离,rB为B点到月球球心的距离。已知月球质量为M,引力常量为G。
(1)求探测器在环月圆轨道1上运行时线速度v1的大小;
(2)证明探测器在椭圆轨道2上运行时,在近月点A和远月点B的线速度大小满足:vA·rA=vB·rB;
(3)某同学根据牛顿运动定律分析得出:质量为m的探测器在圆轨道1和椭圆轨道2上经过A点时的加速度a1、a2均满足= ma,因此a1=a2。请你利用其它方法证明上述结论。(若规定两质点相距无限远时引力势能为零,则质量分别为m1和m2的两个质点相距r时的引力势能Ep=。)
专题16空间站模型-高考物理万有引力与航天常用模型最新模拟题精练: 这是一份专题16空间站模型-高考物理万有引力与航天常用模型最新模拟题精练,文件包含专题16空间站模型解析版docx、专题16空间站模型原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
专题15北斗导航模型-高考物理万有引力与航天常用模型最新模拟题精练: 这是一份专题15北斗导航模型-高考物理万有引力与航天常用模型最新模拟题精练,文件包含专题15北斗导航模型解析版docx、专题15北斗导航模型原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
专题11月球探测-高考物理万有引力与航天常用模型最新模拟题精练: 这是一份专题11月球探测-高考物理万有引力与航天常用模型最新模拟题精练,文件包含专题11月球探测解析版docx、专题11月球探测原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。