中考数学专题复习 专题32 中考几何平移类问题
展开从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法
2、学会运用数形结合思想。
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
3、要学会抢得分点。
一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
4、学会运用等价转换思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
5、学会运用分类讨论的思想。
如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
6、转化思想:
体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
专题32 中考几何平移类问题
1.平移的定义:平面图形的每个点沿着某一方向移动相同的距离,这样的图形运动称为平移.平移是由移动的方向和移动的距离所决定.平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
2.平移的特点:经平移运动后的图形图形的位置发生变化, 形状和大小不变.
3.理解并掌握平移的三个特征:
(1)对应线段平行(或在一条直线上)且相等;对应角相等.
(2)对应点所连的线段平行(或在一条直线上)且相等.
(3)图形在平移后形状和大小都不变.
4.图形平移的画法:
(1)确定点;(2)定方向;(3)定距离。
【例题1】(2020•广东)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为( )
A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)
【对点练习】(2019湖南邵阳)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是( )
A.k1=k2 B.b1<b2
C.b1>b2 D.当x=5时,y1>y2
【例题2】(2019桂林)如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为 .
【对点练习】(2020枣庄模拟)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
【例题3】(2020•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).
(1)求这个一次函数的解析式;
(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.
一、选择题
1.(2020•菏泽)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为( )
A.(0,﹣2)B.(0,2)C.(﹣6,2)D.(﹣6,﹣2)
2.(2019哈尔滨)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线
为( )
A. B.
C. D.
3.(2019海南)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为( )
A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)
4.(2019广西梧州)直线y=3x+1向下平移2个单位,所得直线的解析式是( )
A.y=3x+3B.y=3x﹣2C.y=3x+2D.y=3x﹣1
5.(2019广西百色)抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的( )
A.先向左平移3个单位,再向下平移2个单位
B.先向左平移6个单位,再向上平移7个单位
C.先向上平移2个单位,再向左平移3个单位
D.先回右平移3个单位,再向上平移2个单位
6.(2020济南模拟)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,在向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为( )
A.(4,3)B.(2,4)C.(3,1)D.(2,5)
7.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式
为( )
A.y=(x﹣1)2+4B.y=(x﹣4)2+4C.y=(x+2)2+6D.y=(x﹣4)2+6
8.(2020咸宁模拟)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为( )
9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )
A.48B.96C.84D.42
10.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )
A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长
C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长
二、填空题
11.(2020•武威)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,3),则点E的坐标为 .
12.(2020枣庄模拟)如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 .
13.(2020咸宁模拟)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为 .
14.(2020岳阳模拟)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是 .(写出所有正确结论的序号)
①b>0
②a﹣b+c<0
③阴影部分的面积为4
④若c=﹣1,则b2=4a.
15.如图所示,一座楼房的楼梯,高1米,水平距离是2.8米,如果要在台阶上铺一种地毯,那么至少要买这种地毯________米.
16.如图,是一块从一个边长为20cm的正方形BCDM材料中剪出的垫片,经测得FG=9cm,则这个剪出的图形的周长是________cm.
17.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是_____.
18.(2019江苏徐州)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为 .
三、解答题
19.(2020•安顺)如图,一次函数y=x+1的图象与反比例函数y=kx的图象相交,其中一个交点的横坐标
是2.
(1)求反比例函数的表达式;
(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=kx图象的交点坐标;
(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=kx的图象没有公共点.
20.(2020齐齐哈尔模拟)如图,在边上为1个单位长度的小正方形网格中:
(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.
(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.
(3)求△CC1C2的面积.
21.(2020浙江宁波模拟)已知抛物线,其中是常数
(1)求证:不论为何值,该抛物线与轴一定有两个公共点;
(2)若该抛物线的对称轴为直线,
①求该抛物线的函数解析式;
②把该抛物线沿轴向上平移多少个单位长度后,得到的抛物线与轴只有一个公共点?
22.如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,你能运用你学的知识求出这块草地的绿地面积吗?
23.如图所示,将△ABC平移,可以得到△DEF,点B的对应点为点E,请画出点A的对应点D、点C的对应点F的位置,并作出△DEF.
24.如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长?
25.如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.求证:BE=DG
26.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)。画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1。
27.如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,你能运用你学的知识求出这块草地的绿地面积吗?
28.(2019宁夏)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.
(1)试确定三角板ABC的面积;
(2)求平移前AB边所在直线的解析式;
(3)求s关于m的函数关系式,并写出Q点的坐标.
29.(2019江苏淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).
(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;
(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;
(3)连接AB2、BB2,求△ABB2的面积.
A.
1:2
B.
1:4
C.
1:5
D.
1:6
(通用版)中考数学总复习考点32 中考几何平移类问题(含解析): 这是一份(通用版)中考数学总复习考点32 中考几何平移类问题(含解析),共26页。试卷主要包含了平移的定义,平移的特点,理解并掌握平移的三个特征,图形平移的画法等内容,欢迎下载使用。
中考数学专题复习 专题39 中考函数综合类问题: 这是一份中考数学专题复习 专题39 中考函数综合类问题,文件包含中考数学专题复习专题39中考函数综合类问题教师版含解析docx、中考数学专题复习专题39中考函数综合类问题学生版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
中考数学专题复习 专题34 中考几何旋转类问题: 这是一份中考数学专题复习 专题34 中考几何旋转类问题,文件包含中考数学专题复习专题34中考几何旋转类问题教师版含解析docx、中考数学专题复习专题34中考几何旋转类问题学生版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。