专题9-6 圆锥曲线大题:非韦达定理形式归类-高考数学一轮复习热点题型归纳与变式演练(全国通用)
展开专题9-6 圆锥曲线大题:非韦达定理形式归类
目录
热点题型归纳
【题型一】椭圆“点代入”型
【题型二】双曲线“点代入”型
【题型三】抛物线“点代入”型
【题型四】知道一根或者求根公式硬算
【题型五】非对称型:韦达定理代入消去
【题型六】非对称型:韦达定理线性“互函”
【题型七】无韦达
真题再现
模拟检测
【题型一】椭圆“点代入”型
【典例分析】
已知椭圆C:=1(a>b>0)的左焦点分别为F1(-c,0),F2(c,0),过F2作垂直于x轴的直线l交椭圆C于A、B两点,满足|AF2|=c.
(1)椭圆C的离心率;
(2)M、N是椭圆C短轴的两个端点,设点P是椭圆C上一点(异于椭圆C的顶点),直线MP、NP分别和x轴相交于R、Q两点,O为坐标原点,若|OR|•|OQ|=4,求椭圆C的方程.
【变式演练】
已知椭圆的一个焦点与抛物线的焦点重合,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)直线交椭圆于、两点,线段的中点为,直线是线段的垂直平分线,求证:直线过定点,并求出该定点的坐标.
【题型二】双曲线“点代入”型
【典例分析】
已知椭圆的一个焦点与抛物线的焦点重合,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)直线交椭圆于、两点,线段的中点为,直线是线段的垂直平分线,求证:直线过定点,并求出该定点的坐标.
【变式演练】
已知双曲线:,,,,,五点中恰有三点在上.
(1)求的方程;
(2)设是上位于第一象限内的一动点,则是否存在定点,使得,若存在,求出点的坐标;若不存在,请说明理由.
【题型三】抛物线“点代入”型
【典例分析】
已知抛物线,圆的圆心为点.
(1)求点到抛物线的准线的距离;
(2)已知点是抛物线上一点(异于原点),过点作圆的两条切线,交抛物线于,两点,若过,两点的直线垂直于,求直线的方程.
【变式演练】
已知抛物线的顶点为原点,其焦点,到直线的距离为.
(1)求抛物线的方程;
(2)设点,为直线上一定点,过点作抛物线的两条切线,,其中,为切点,求直线的方程,并证明直线过定点.
【题型四】知道一根或者求根公式硬算
【典例分析】
已知抛物线方程为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:.
(1)当时,求;
(2)证明:存在常数,使得;
(3)为抛物线准线上三点,且,判断与的关系.
【变式演练】
如图所示,椭圆的离心率为,其右准线方程为,A、B分别为椭圆的左、右顶点,过点A、B作斜率分别为、,直线AM和直线BN分别与椭圆C交于点M,N(其中M在x轴上方,N在x轴下方).
(1)求椭圆C的方程;
(2)若直线MN恒过椭圆的左焦点,求证:为定值.
【题型五】非对称型:韦达定理代入消去
【典例分析】
已知点坐标为,点分别为椭圆的左、右顶点,直线交于点是等腰直角三角形,且.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,其中点在轴上方.设直线的斜率为,直线的斜率为,探究是否为定值,若为定值,求出定值;若不是定值,说明理由.
【变式演练】
已知椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线过点且与椭圆相交于两点.过点作直线的垂线,垂足为.证明直线过轴上的定点.
【题型六】非对称型:韦达定理线性“互函”
【典例分析】
设椭圆C的左、右顶点为A,,过右焦点作非水平直线与椭圆C交于P,Q两点,记直线AP,BQ的斜率分别为,,试证:为定值,并求此定值(用a的函数表示)
【变式演练】
已知椭圆的离心率为,其短轴长为,设直线,过椭圆右焦点的直线(不与轴重合)与椭圆相交于、两点,过点作,垂足为.
(1)求椭圆的标准方程;
(2)求证:直线过定点,并求出定点的坐标.
【题型七】无韦达
【典例分析】
已知过点,圆心在抛物线上运动,若为在轴上截得的弦,设,.
(1)当运动时,是否变化?证明你的结论.
(2)求的最大值,并求出此时方程.
【变式演练】
已知椭圆经过点,离心率为,为坐标原点.
(1)求椭圆的方程;
(2)设、分别为椭圆的左、右顶点,为椭圆上一点(不在坐标轴上),直线交轴于点,为直线上一点,且,求证:、、三点共线.
1.(四川高考理科21)椭圆有两顶点、,过其焦点的直线与椭圆交于两点,并与轴交于点.直线与直线交于点.
(I)当时,求直线的方程;
(II)当点异于两点时,求证: 为定值。
2.(江苏高考理科)在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点的直线TA、TB与椭圆分别交于点M、,其中m>0,。
(1)设动点P满足,求点P的轨迹;
(2)设,求点T的坐标;
(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
3.(辽宁高考理20)如图,椭圆,动圆.点分别为的左、右顶点,与相交于四点
(1)求直线与直线交点的轨迹方程;
(2)设动圆与相交于四点,其中,.若矩形与矩形的面积相等,证明:为定值。
4.、(新课标1理文20题)设抛物线的焦点为,准线为,,已知以为圆心,为半径的圆交于两点;(1)若,的面积为;求的值及圆的方程;(2)若三点在同一直线上,直线与平行,且与只有一个公共点,
求坐标原点到距离的比值。
5..(2022年新高考2卷)设双曲线的右焦点为,渐近线方程为
求的方程
经过的直线与的渐近线分别交于,两点,点,在上,且,过且斜率为的直线与过且斜率为的直线交于点,从下面三个条件中选择两个条件,证明另一个条件成立:在上.
1..已知椭圆的左顶点为A,右焦点为F,过点A作倾斜角为的直线与C相交于A,B,且,其中O为坐标原点.
(1)求椭圆的离心率e;
(2)若,过点F作与直线平行的直线l,l与椭圆C相交于P,Q两点.
①求的值;
②点M满足,直线与椭圆的另一个交点为N,若,求的值.
2.已知椭圆的右焦点为F,长轴长为4,离心率为.过点的直线与椭圆C交于A,B两点.
(1)求椭圆C的标准方程;
(2)设直线的斜率分别为,求证:为定值.
3.已知椭圆的左右顶点分别为,,右焦点的坐标为,点坐标为,且直线轴,过点作直线与椭圆交于,两点(,在第一象限且点在点的上方),直线与交于点,连接.
(1)求椭圆的方程;
(2)设直线的斜率为,直线的斜率为,问:的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.
4.椭圆:的焦点,是等轴双曲线:的顶点,若椭圆与双曲线的一个交点是P,的周长为.(1)求椭圆的标准方程;
(2)点M是双曲线上任意不同于其顶点的动点,设直线、的斜率分别为,,求证,的乘积为定值;
(3)过点任作一动直线l交椭圆与A,B两点,记,若在直线AB上取一点R,使得,试判断当直线l运动是,点R是否在某一定直线上运动?若是,求出该直线的方程;若不是,请说明理由.
5.如图,在平面直角坐标系中,焦点在轴上的鞘园C:经过点,且经过点作斜率为的直线交椭圆C与A、B两点(A在轴下方).
(1)求椭圆C的方程;
(2)过点且平行于的直线交椭圆于点M、N,求的值;
(3)记直线与轴的交点为P,若,求直线的斜率的值.
6.如图,在平面直角坐标系xOy中,椭圆的离心率为,右准线的方程为x=4,F1,F2分别为椭圆C的左、右焦点,A,B分别为椭圆C的左右顶点.
(1)求椭圆C的标准方程;
(2)过T(t,0)(t>a)作斜率为k(k<0)的直线l交椭圆C与M,N两点(点M在点N的左侧),且F1M∥F2N.设直线AM,BN的斜率分别为k1,k2,求k1•k2的值.
7.如图,过点作两条直线和,分别交抛物线于,和,(其中,位于轴上方),直线,交于点.
(1)试求,两点的纵坐标之积,并证明:点在定直线上;
(2)记的面积为,的面积为,若,求的最小值.
专题9-5 圆锥曲线大题基础:定点归类-高考数学一轮复习热点题型归纳与变式演练(全国通用): 这是一份专题9-5 圆锥曲线大题基础:定点归类-高考数学一轮复习热点题型归纳与变式演练(全国通用),文件包含专题9-5圆锥曲线大题基础定点归类-高考数学一轮复习热点题型归纳与变式演练全国通用解析版docx、专题9-5圆锥曲线大题基础定点归类-高考数学一轮复习热点题型归纳与变式演练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
专题9-1 直线与方程题型归类-高考数学一轮复习热点题型归纳与变式演练(全国通用): 这是一份专题9-1 直线与方程题型归类-高考数学一轮复习热点题型归纳与变式演练(全国通用),文件包含专题9-1直线与方程题型归类-高考数学一轮复习热点题型归纳与变式演练全国通用解析版docx、专题9-1直线与方程题型归类-高考数学一轮复习热点题型归纳与变式演练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
专题9-2 圆的综合题型归类-高考数学一轮复习热点题型归纳与变式演练(全国通用): 这是一份专题9-2 圆的综合题型归类-高考数学一轮复习热点题型归纳与变式演练(全国通用),文件包含专题9-2圆的综合题型归类-高考数学一轮复习热点题型归纳与变式演练全国通用解析版docx、专题9-2圆的综合题型归类-高考数学一轮复习热点题型归纳与变式演练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。