|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023年中考数学二轮复习 动点问题 拓展练习
    立即下载
    加入资料篮
    2023年中考数学二轮复习 动点问题 拓展练习01
    2023年中考数学二轮复习 动点问题 拓展练习02
    2023年中考数学二轮复习 动点问题 拓展练习03
    还剩14页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年中考数学二轮复习 动点问题 拓展练习

    展开
    这是一份2023年中考数学二轮复习 动点问题 拓展练习,共17页。试卷主要包含了单选题,填空题,综合题等内容,欢迎下载使用。

     

    2023年中考数学二轮复习《动点问题》拓展练习

    一、单选题

    1如图,在正方形ABCD中,点MAB上一动点,点ECM的中点,AE绕点E顺时针旋转90°得到EF,连接DEDF.给出结论:DEEF∠CDF45°若正方形的边长为2,则点M在射线AB上运动时,CF有最小值.其中结论正确的是(  )

    A①②③ B①② C①③ D②③

    2如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EOCD于点F,则四边形AECF形状的变化依次为(  ) 

    A.平行四边形正方形平行四边形矩形

    B.平行四边形菱形平行四边形矩形

    C.平行四边形正方形菱形矩形

    D.平行四边形菱形正方形矩形

    3如图,AB⊙O的一条弦,P⊙O上一动点(不与点AB重合),CD分别是ABBP的中点.若AB4∠ APB45°,则CD长的最大值为(  ) 

    A2 B2  C4 D4

    4如图,在Rt△ABC中,∠C90°ACBC6cm,点P从点A出发,沿AB方向以每秒 cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为(  ) 

    A B2 C2  D3

    5如图所示,在△ABC中,AB=AC=5BC=8D是线段BC上的动点(不含端点BC)。若线段AD长为正整数,则点D的个数共有(  )

    A5 B4 C3 D2

    6如图,在圆 中,半径 ,弦 ,点 是劣弧 上的一个动点,连接 ,作 ,垂足为 .在点 移动的过程中,线段 的最小值是(  ) 

    A6 B7 C8 D9

    7如图,等边的边长为,射线,点E从点A出发沿射线的速度运动,点F从点B出发沿射线的速度运动.设运动时间为,当t=(  )s时,以ACEF为顶点的四边形是平行四边形.

    A12 B23 C24 D26

    8如图,电子蚂蚁 在边长为1个单位长度的正方形 的边上运动,电子蚂蚁 从点 出发,以 个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁 从点 出发,以 个单位长度/秒的速度绕正方形作逆时针运动,则它们第2019次相遇在(  ) 

    A.点  B.点  C.点  D.点

    9如图1,在矩形 中,对角线 相交于点 ,动点 从点 出发,在线段 上匀速运动,到达点 时停止.设点 运动的路程为 ,线段 的长为 ,如果 的函数图象如图2所示,则矩形 的面积是(  ) 

    A12 B24 C48 D60

    10如图所示,在菱形ABCD中,∠A=60°AB=2EF两点分别从AB两点同时出发,以相同的速度分别向终点BC移动,连接EF,在移动的过程中,EF的最小值为(  )

    A1 B C D

    11已知中,D边的中点,点EF分别在边上运动,且保持.连接得到下列结论:是等腰直角三角形;面积的最大值是2的最小值是2.其中正确的结论是(  )

    A②③ B①② C①③ D①②③

    12如图,在△ABC中,AC=BC=8∠BCA=60°,直线AD⊥BC于点DEAD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是(  )

    A1 B1.5 C2 D4

    二、填空题

    13如图,在矩形ABCD中,AB=6BC=4MAD的中点,NAB边上的动点,将△AMN沿MN所在直线折叠,得到 ,连接 ,则 的最小值是       

    14如图所示,在平行四边形ABCD中,AB5cmAD9cm.点PAD边上以1cm/s的速度从点A向点D运动,点QBC边上以4cm/s的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时,PQ同时停止运动,设运动时间为ts)且t0,当以PDQB为顶点的四边形是平行四边形时,则t的所有可能值为                  

    15如图,在□ABCD中,MAB的中点,,点E是线段CM上一个动点,以CD为对角线作□CEDF,则EF的最小值是       

    16 中, ,动点P从点B出发,沿射线BC以每秒1个单位长度的速度运动,若 是以AB为腰的等腰三角形,则点P的运动时间为       秒.

    17如图, 中, 上的动点,将线段 绕点 逆时针旋转 ,得到线段 ,连接  

    1)点 的最短距离是        

    2 的最小值是        

    18如图,正方形ABCD中, OBC边的中点,点E是正方形内一动点, ,连接DE,将线段DE绕点D逆时针旋转90°DF,连接AECF.则线段OF长的最小值为        

    三、综合题

    19如图,在△ABC中,BC=7cmAC=24cmAB=25cmP点在BC上,从B点到C点运动(不包括C),点P运动的速度为2cm/sQ点在AC上从C点运动到A(不包括A),速度为5cm/s.若点PQ分别从BC同时运动,请解答下面的问题,并写出探索主要过程:

    1)经过多少时间后,PQ两点的距离为5 cm  

    2)经过多少时间后, 的面积为15cm2  

    3)设运动时间为t,用含t的代数式表示△PCQ的面积,并用配方法说明t为何值时△PCQ的面积最大,最大面积是多少?  

    20如图,在四边形ABCD中,AD∥BCAD=3CD=5AB=4 ∠B=45°,动点M从点B出发沿线段BC以每秒1个单位长度的速度向终点C运动;同时动点N从点D出发沿线段DC- CB向终点B运动.设运动的时间为t秒.
     

    1)直接写出BM=       (用含t的代数式表示),BC=        

    2)如果当四边形ABMD是平行四边形时,点M与点N恰好相遇,求点N的运动速度:

    3)在(2)的条件下,求出t为何值时,以点AMND为项点的四边形是平行四边形.

    21已知如图,在矩形ABCD中,AB=4cmBC=7cm

    1)点F在边BC上,且 BF=3,若点P从点A出发,以每秒1cm的速度沿A→D→C→F运动,设点P运动的时间为t秒,求当t为何值时,△AFP为等腰三角形?

    2)如图2,将长方形ABCD折叠,折痕为MN,点A的对应点A′落在线段BC上,当点A′ BC上移动时,点MN也随之移动,若限定点MN分别在线段ABAD上移动,则点A′ 在线段BC上可移动的最大距离是            

    22如图,在△ABC中,DAB的中点,ABAC10cmBC8cm,动点P从点B出发,沿BC方向以每秒3cm的速度向点C运动;同时动点Q从点C出发,沿CA方向以每秒3cm的速度向点A运动,运动时间是t秒.

    1)在运动过程中,当点C位于线段PQ的垂直平分线上时,求出t的值;

    2)在运动过程中,是否存在某一时刻t,使△BPD△CQP全等,若存在,求出t的值.若不存在,请说明理由.

    23 在平面直角坐标系中的位置如图所示,轴交于点,点的坐标为,线段的长分别是方程的两根,

    1)求线段的长;

    2)动点从点出发,以每秒1个单位长度的速度沿轴负半轴向终点运动,过点作直线轴垂直,设点运动的时间为秒,直线扫过四边形的面积为,求的关系式;

    3 为直线上一点,在平面内是否存在点,使以为顶点的四边形为正方形?若存在,请直接写出点的坐标;若不存在,请说明理由.

    24如图,在矩形ABCD中,AB=16cmBC=6cm,动点PQ分别以3cm/s2cm/s的速度从点AC同时出发,点Q从点C向点D移动.

    1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点PQ分别从点AC同时出发,问经过多长时间PQ两点之间的距离是10cm  

    2)若点P沿着AB→BC→CD移动,点PQ分别从点AC同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2  


    答案解析部分

    1【答案】A

    2【答案】B

    3【答案】B

    4【答案】B

    5【答案】C

    6【答案】C

    7【答案】D

    8【答案】D

    9【答案】C

    10【答案】D

    11【答案】B

    12【答案】C

    13【答案】

    14【答案】6

    15【答案】

    16【答案】58

    17【答案】1

    2

    18【答案】

    19【答案】1)解:连接PQ 

    △ABC中,BC=7cmAC=24cmAB=25cm

    BC2AC2=625=AB2

    △ABC为直角三角形,∠C=90°

    x秒后,PQ两点的距离为5 cm

    根据题意可得BP=2x,CQ=5x

    CP=BCBP=72x

    根据勾股定理可得CP2CQ2=PQ2

    即(72x2+(5x2=5 2

    解得: (不符合实际,舍去)

    答:经过1秒后,PQ两点的距离为5 cm.

    2)解:设y秒后, 的面积为15cm2

    根据题意可得BP=2y,CQ=5y

    CP=BCBP=72y

    解得:

    答:经过 2秒后, 的面积为15cm2.

    3)解:根据题意可得BP=2t,CQ=5t 

    CP=BCBP=72t

    =

    =

    =

    =

    =

    =

    (当且仅当 取等号),即  

    时, 最大,最大面积为 .

    20【答案】1t10

    2)解:当四边形ABMD是平行四边形时,BMAD3BMt
    t3
    t3时,点M与点N相遇,
    N运动的距离为:CDCMCDBC−BM510−312
    N的运动速度为:12÷34
    N的运动速度为每秒4个单位长度;

    3)解:点M与点NBC边时,以点AMND为顶点的四边形可以是平行四边形,
    M在点N左边时,如图,

    以点AMND为顶点的四边形可以是平行四边形,
    MNAD3
    BMtCN4t−CD4t−5BC10
    10−t−4t−5)=3,解得:t
    t时,以点AMND为顶点的四边形是平行四边形;
    M在点N右边时,如图,

    以点AMND为顶点的四边形可以是平行四边形,
    NMAD3
    CM10−tBNBCBCCD−4t15−4tBC10
    10−t+(15−4t)=10−3,解得:t
    t时,以点AMND为顶点的四边形是平行四边形.
    t的值时,以点AMND为顶点的四边形是平行四边形.

     

    21【答案】1)解:如图,以A为圆心,AF长为半径画圆,交AD  ,AF=A

    Rt△ABF中,AB=4cm,BF=3cm, 

    AF=   =5cm; 

    AP1=AF=5cm; 

    t1=5s; 

    t1=5s时, 

    如图,以F为圆心,AF长为半径画圆,交AD  ,FA=F ,DC  ,则FA=F

    BF=3cmAB=4cm, 

    FA=   =5cm; 

    FP2=FP3=FA=5cm, 

    FG⊥ADG,则AP2=2AG=2BF=6cm 

    t2=6s; 

    BC=7cm, 

    FC=7-3=4cm, 

    CP3=   =3cm, 

    DP3=1cm 

    AD+DP3=8cm, 

    t3=8s; 

    AF的垂直平分线,交AD  ,交AF于H,连接F

    ABCD为矩形, 

    AD∥BC∠B=90° 

    ∠DAF=∠AFB 

    ∠AHP4=∠B=90° 

    △AHP4∽△ABF, 

      ,  

    AP4= , 

    t4= s; 

    综上,当t=5s6s8s s时,△AFP为等腰三角形。

    2( -3)cm

    22【答案】1)解:由题意得

    C位于线段PQ的垂直平分线上,

    CP=CQ

    解得

    2)解:AB=AC

    ∠B=∠C

    BD=CP时,△BPD≌△CQP

    AB=10cmDAB的中点,

    BD=5cm

    解得

    PB=PCBD=CQ时,△BPD≌△CPQ

    ,此方程组无解,

    不存在△BPD≌△CPQ这种情况,

    综上所述,当时,△BPD≌△CQP

    23【答案】1)解:解方程 可得

    线段 的长分别是方程 的两根,且

    线段 的长为:7

    2)解:如图,当 时,点

    如图,当 时,

    设直线 解析式为:

    ,点 的坐标为 ,代入得 ,解得:

    直线 解析式为:

    3)解:存在满足条件的 点,其坐标为(23) (-40) 或 (-1-3) .

    24【答案】1)解:过点 .  

    则根据题意,得

    秒后,点 和点 的距离是

    ,即

    经过 和点 的距离是

    2)解:连接 .设经过 后的 面积为 .  

    时,则

    解得

    时,

    解得 (舍去).

    时,

    解得 (舍去).

    综上所述,经过 秒或 的面积为 .


     

    相关试卷

    中考数学动点最值问题专项练习: 这是一份中考数学动点最值问题专项练习,共6页。

    专题36 几何动态性问题之动点问题-2023年中考数学二轮复习核心考点拓展训练(原卷版): 这是一份专题36 几何动态性问题之动点问题-2023年中考数学二轮复习核心考点拓展训练(原卷版),共8页。试卷主要包含了动点产生函数关系,动点产生面积变化,动点产生两点距离变化,动点产生图形形状变化,动点产生三角形相似,动点产生两直线位置关系变化,动点产生最值等内容,欢迎下载使用。

    中考数学总复习全等的动点动点问题难点解析与训练: 这是一份中考数学总复习全等的动点动点问题难点解析与训练,共5页。试卷主要包含了友情提醒等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map