专题02 数列——【备考2023】高考数学大题精练 (新高考专用)(原卷版+解析版)
展开专题02 数列
数列一般作为全国卷第17题或第18题或者是19题,主要考查数列对应的求和运算以及相应的性质
考察题型一般为:
1 错位相减求和
2 裂项相消求和
3 (并项)分组求和
4 数列插项问题
5 不良结构问题
6 数列与其他知识点交叉问题
在新高考改革情况下,对于数列的思辨能力有进一步的加强,务必要重视
题型一:数列错位错位相减求和
1.已知为首项的等比数列,且,,成等差数列;又为首项的单调递增的等差数列,的前n项和为,且,,成等比数列.
(1)分别求数列,的通项公式;
(2)令,数列的前n项和为,求证:.
1.若等差数列的前n项和为,数列是等比数列,并且 ,.
(1)求数列和的通项公式;
(2)求数列的前n项和;
(3)若,求数列的前n项和
题型二:裂项相消求和
1 已知数列的前项的积记为,且满足.
(1)证明:数列为等差数列;
(2)设,求数列的前项和.
1.已知正项数列的前项和为,且.
(1)证明:是等差数列.
(2)设数列的前项和为,若满足不等式的正整数的个数为3,求的取值范围.
题型三:(并项)分组求和
设是首项为1的等比数列,且满足成等差数列:数列各项均为正数,为其前n项和,且满足,则
(1)求数列和的通项公式;
(2)记为数列的前n项的和,证明:;
(3)任意,求数列的前项的和.
1.已知数列满足,.
(1)记,写出,,,,并猜想数列的通项公式;
(2)证明(1)中你的猜想;
(3)若数列的前n项和为,求.
题型四:数列插项问题
1.记数列{an}的前n项和为Sn,对任意正整数n,有2Sn=nan,且a2=3.
(1)求数列{an}的通项公式;
(2)对所有正整数m,若ak<2m<ak+1,则在ak和ak+1两项中插入2m,由此得到一个新数列{bn},求{bn}的前40项和.
1.已知数列的前n项和为,且.
(1)求证:是等比数列;
(2)在与之间插入n个数,使这个数组成一个公差为的等差数列,求数列的前n项和.
题型五 不良结构问题
1.已知数列是公差不为零的等差数列,且,,成等比数列.
(1)求数列的通项公式;
(2)设数列的前n项和为,在①,;②,;③,这三个条件中任选一个,将序号补充在下面横线处,并根据题意解决问题.
问题:若,且______,求数列的前n项和.
注:如果选择多个条件分别解答,按第一个解答给分.
1.在①,②,③这三个条件中选择两个,补充在下面问题中,并进行解答已知等差数列的前n项和为,,___________,___________.
(1)求数列的通项公式;
(2)设,求数列的前n项和;
(3)若存在,使得成立,求实数的取值范围.
注:如果选择多组条件分别解答,按第一个解答计分.
题型六 数列与其他知识点交叉问题
1.为了让幼儿园大班的小朋友尝试以客体区分左手和右手,左肩和右肩,在游戏中提高细致观察和辨别能力,同时能大胆地表达自己的想法,体验与同伴游戏的快乐,某位教师设计了一个名为【肩手左右】的游戏,方案如下:
游戏准备:选取甲、乙两位小朋友面朝同一方向并排坐下进行游戏.教师站在两位小朋友面前出示游戏卡片.游戏卡片为两张白色纸板,一张纸板正反两面都打印有相同的“左”字,另一张纸板正反两面打印有相同的“右”字.
游戏进行:一轮游戏(一轮游戏包含多次游戏直至决出胜者)开始后,教师站在参加游戏的甲、乙两位小朋友面前出示游戏卡片并大声报出出示的卡片上的“左”或者“右”字.两位小朋友如果听到“左”的指令,或者看到教师出示写有“左”字的卡片就应当将左手放至右肩上并大声喊出“停!”.小朋友如果听到“右”的指令,或者看到教师出示写有“右”字的卡片就应当将右手放至左肩上并大声喊出“停!”.最先完成指令动作的小朋友喊出“停!”时,两位小朋友都应当停止动作,教师根据两位小朋友的动作完成情况进行评分,至此游戏完成一次.
游戏评价:为了方便描述问题,约定:对于每次游戏,若甲小朋友正确完成了指令动作且乙小朋友未完成则甲得1分,乙得-1分;若乙小朋友正确完成了指令动作且甲小朋友未完成则甲得-1分,乙得1分;若甲,乙两位小朋友都正确完成或都未正确完成指令动作,则两位小朋友均得0分.当两位小朋友中的一位比另外一位小朋友的分数多8分时,就停止本轮游戏,并判定得分高的小朋友获胜.现假设“甲小朋友能正确完成一次游戏中的指令动作的概率为,乙小朋友能正确完成一次游戏中的指令动作的概率为”,一次游戏中甲小朋友的得分记为X.
(1)求X的分布列;
(2)若甲小朋友、乙小朋友在一轮游戏开始时都赋予4分,表示“甲小朋友的当前累计得分为i时,本轮游戏甲小朋友最终获胜”的概率,则,,,其中,,.假设,.
(i)证明:为等比数列;
(ii)根据的值说明这种游戏方案是否能够充分验证“甲小朋友能正确完成一次游戏中的指令动作的概率为0.5,乙小朋友能正确完成一次游戏中的指令动作的率为0.6”的假设.
1.已知函数,.
(1)判断函数的奇偶性,并说明理由;
(2)设函数(,),若函数和都是奇函数,将满足条件的按从小到大的顺序组成一个数列,求的通项公式;
(3)求实数与正整数,使得在内恰有147个零点.
一、解答题
1.已知数列的前项之积为.
(1)求数列的通项公式;
(2)设公差不为0的等差数列中,,___________,求数列的前项和.
请从①; ②这两个条件中选择一个条件,补充在上面的问题中并作答.
注:如果选择多个条件分别作答,则按照第一个解答计分.
2.已知数列的前项和为.
(1)求及的通项公式;
(2)若对任意的恒成立,求的最小值.
3.在数列中,,.
(1)证明:数列是等比数列;
(2)令,数列的前n项和为,求证:.
4.已知正项等差数列和正项等比数列,为数列的前n项和,且满足.
(1)分别求数列和的通项公式;
(2)将数列中与数列相同的项剔除后,按从小到大的顺序构成数列,记数列的前n项和为,求.
5.已知为首项的等比数列,且,,成等差数列;又为首项的单调递增的等差数列,的前n项和为,且,,成等比数列.
(1)分别求数列,的通项公式;
(2)令,数列的前n项和为,求证:.
6.设数列的前项之积为,且满足.
(1)证明:数列是等差数列,并求数列的通项公式;
(2)记,证明:.
7.设是首项为1的等比数列,且满足成等差数列:数列各项均为正数,为其前n项和,且满足,则
(1)求数列和的通项公式;
(2)记为数列的前n项的和,证明:;
(3)任意,求数列的前项的和.
一、解答题
1.(2022·全国·统考高考真题)记为数列的前n项和.已知.
(1)证明:是等差数列;
(2)若成等比数列,求的最小值.
2.(2022·全国·统考高考真题)记为数列的前n项和,已知是公差为的等差数列.
(1)求的通项公式;
(2)证明:.
3.(2022·全国·统考高考真题)已知为等差数列,是公比为2的等比数列,且.
(1)证明:;
(2)求集合中元素个数.
4.(2022·北京·统考高考真题)已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.
(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;
(2)若为连续可表数列,求证:k的最小值为4;
(3)若为连续可表数列,且,求证:.
5.(2022·天津·统考高考真题)设是等差数列,是等比数列,且.
(1)求与的通项公式;
(2)设的前n项和为,求证:;
(3)求.
6.(2022·浙江·统考高考真题)已知等差数列的首项,公差.记的前n项和为.
(1)若,求;
(2)若对于每个,存在实数,使成等比数列,求d的取值范围.
7.(2021·全国·统考高考真题)已知数列满足,
(1)记,写出,,并求数列的通项公式;
(2)求的前20项和.
8.(2020·山东·统考高考真题)已知公比大于的等比数列满足.
(1)求的通项公式;
(2)记为在区间中的项的个数,求数列的前项和.
9.(2020·海南·高考真题)已知公比大于的等比数列满足.
(1)求的通项公式;
(2)求.
专题04 立体几何——【备考2023】高考数学大题精练 (新高考专用)(原卷版+解析版): 这是一份专题04 立体几何——【备考2023】高考数学大题精练 (新高考专用)(原卷版+解析版),文件包含专题04立体几何备考2023高考数学大题精练新高考专用解析版docx、专题04立体几何备考2023高考数学大题精练新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
专题03 概率统计——【备考2023】高考数学大题精练 (新高考专用)(原卷版+解析版): 这是一份专题03 概率统计——【备考2023】高考数学大题精练 (新高考专用)(原卷版+解析版),文件包含专题03统计概率备考2023高考数学大题精练新高考专用解析版docx、专题03统计概率备考2023高考数学大题精练新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
预测卷01——【备考2023】高考数学大题精练 (全国通用)(原卷版+解析版): 这是一份预测卷01——【备考2023】高考数学大题精练 (全国通用)(原卷版+解析版),文件包含预测卷01解析版docx、预测卷01原卷版docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。