高中数学高考课时跟踪检测(十三) 函数模型及其应用 作业
展开课时跟踪检测(十三) 函数模型及其应用
1.有一组实验数据如下表所示:
t | 1 | 2 | 3 | 4 | 5 |
s | 1.5 | 5.9 | 13.4 | 24.1 | 37 |
下列所给函数模型较适合的是( )
A.y=logax(a>1) B.y=ax+b(a>1)
C.y=ax2+b(a>0) D.y=logax+b(a>1)
解析:选C 由题表中数据可知,s随t的增大而增大且增长速度越来越快,A、D中的函数的增长速度越来越慢,B中的函数的增长速度保持不变,C中的函数在x>1时,y随x的增大而增大,且增长速度越来越快.故选C.
2.某新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( )
A.y=100x B.y=50x2-50x+100
C.y=50×2x D.y=100log2x+100
解析:选C 根据函数模型的增长差异和题目中的数据可知,应为指数函数模型.故选C.
3.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为( )
A. B.
C. D.-1
解析:选D 设年平均增长率为x,原生产总值为a,则a(1+p)·(1+q)=a(1+x)2,解得x=-1,故选D.
4.(多选)某工厂生产一种溶液,按市场要求该溶液的杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少,若使这种溶液的杂质含量达到市场要求,则过滤次数可以为(参考数据:lg 2≈0.301,lg 3≈0.477)( )
A.6 B.7
C.8 D.9
解析:选CD 设经过n次过滤这种溶液的含量达到市场要求,则×n≤,即n≤,
两边取对数得nlg≤-lg 20,
即n(lg 2-lg 3)≤-(1+lg 2),
得n≥≈7.4,故选C、D.
5.(2020·新高考全国卷Ⅰ)基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=ert描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )
A.1.2天 B.1.8天
C.2.5天 D.3.5天
解析:选B ∵R0=1+rT,∴3.28=1+6r,∴r=0.38.
由题意,累计感染病例数增加1倍,
则I(t2)=2I(t1),即e0.38t2=2e0.38t1,
∴e0.38(t2-t1)=2,即0.38(t2-t1)=ln 2≈0.69,
解得t2-t1≈1.8,故选B.
6.(2021·安徽淮北月考)华罗庚是上世纪我国伟大的数学家,以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华王方法”等.他除了数学理论研究,还在生产一线大力推广了“优选法”和“统筹法”.“优选法”,是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法.在当前防疫取得重要进展的时刻,为防范机场带来的境外输入,某机场海关在对入境人员进行检测时采用了“优选法”提高检测效率:每16人为一组,把每个人抽取的鼻咽拭子分泌物混合检查,若为阴性,则全部放行;若为阳性,则对该16人再次抽检确认感染者.某组16人中恰有一人感染(鼻咽拭子样本检验将会是阳性),若逐一检测可能需要15次才能确认感染者.现在先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性,则认定在另一组;若为阳性,则认定在本组.继续把认定的这组的8人均分为2组,选其中一组4人的样本混合检查……依此类推,最终从这16人中认定那名感染者需要经过检测的次数为( )
A.3 B.4
C.6 D.7
解析:选B 先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性,则认定在另一组;若为阳性,则认定在本组,此时进行了1次检测.继续把认定的这组的8人均分为2组,选其中一组4人的样本混合检查,若为阴性,则认定在另一组;若为阳性,则认定在本组,此时进行了2次检测.继续把认定的这组的4人均分为2组,选其中一组2人的样本混合检查,若为阴性,则认定在另一组;若为阳性,则认定在本组,此时进行了3次检测.选认定的这组的2人中一人进行样本检查,若为阴性,则认定是另一个人;若为阳性,则认定为此人,此时进行了4次检测.所以,最终从这16人中认定那名感染者需要经过4次检测.故选B.
7.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和a m(0<a<12),不考虑树的粗细.现用16 m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图象大致是( )
解析:选B 设AD长为x,则CD长为16-x.
又因为要将P点围在矩形ABCD内,所以a≤x≤12.
则矩形ABCD的面积为x(16-x).
当0<a≤8时,当且仅当x=8时,u=64.
当8<a<12时,u=a(16-a).
所以u=分段画出函数图象,可得其形状与B选项中图象接近.故选B.
8.某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为( )
A.13立方米 B.14立方米
C.15立方米 D.16立方米
解析:选C 设该职工某月的实际用水为x立方米时,水费为y元,由题意得y=即y=易知该职工这个月的实际用水量超过10立方米,所以5x-20=55,解得x=15,故选C.
9.某地区要建造一条防洪堤,其横断面为等腰梯形ABCD,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面面积为9平方米,且高度不低于米.记防洪堤横断面的腰长为x米,外周长(梯形的上底线段BC与两腰长的和)为y米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x的取值范围为( )
A.[2,4] B.[3,4]
C.[2,5] D.[3,5]
解析:选B 根据题意知,9=(AD+BC)h,其中AD=BC+2×=BC+x,h= x,所以9=(2BC+x)x,得BC=-,由得2≤x<6.所以y=BC+2x=+(2≤x<6),由y=+≤10.5,解得3≤x≤4.因为[3,4]⊆[2,6),所以腰长x的取值范围为[3,4].故选B.
10.成都市某物流公司为了配合“北改”项目顺利进行,决定把三环内的租用仓库搬迁到北三环外重新租地建设.已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( )
A.5千米处 B.4千米处
C.3千米处 D.2千米处
解析:选A 设仓库应建在离车站x千米处.因为仓库每月占用费y1与仓库到车站的距离成反比,所以令反比例系数为m(m>0),则y1=.当x=10时,y1==2,所以m=20.因为每月车载货物的运费y2与仓库到车站的距离成正比,所以令正比例系数为n(n>0),则y2=nx,当x=10时,y2=10n=8,所以n=.所以两项费用之和为y=y1+y2=+≥ 2 =8,当且仅当=,即x=5时取等号.所以要使这两项费用之和最小,仓库应建在离车站5千米处.故选A.
11.中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可,良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史,考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间t(单位:年)的衰变规律满足N=N0·2(N0表示碳14原有的质量),则经过5 730年后,碳14的质量变为原来的________;经过测定,良渚古城遗址文物样本中碳14的质量是原来的至,据此推测良渚古城存在的时期距今约在5 730年到________年之间.(参考数据:lg 2≈0.30,lg 7≈0.85,lg 3≈0.48)
解析:∵N=N0·2,∴当t=5 730时,N=N0·2-1=N0.∴经过5 730年后,碳14的质量变为原来的.
由题意可知2>,
两边同时取以2为底的对数得,log22>log2,
∴>=≈-1.2,∴t<6 876,
∴推测良渚古城存在的时期距今约在5 730年到6 876年之间.
答案: 6 876
12.已知某品牌商品靠广告宣传得到的收入R与广告费A之间满足关系R=a(a为常数且a>0),广告效应D=a-A.那么对于此商品,精明的商人为了取得最大的广告效应,投入的广告费应为________.(用常数a表示)
解析:由题意得D=a-A=-2+,且A≥0,∴当=,即A=时,D最大,最大为.
答案:
13.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P(毫克/升)与时间t(小时)的关系为P=P0e-kt,P0为过滤前的污染物数量.如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.
解析:由题设可得(1-0.1)P0=P0e-5k,即0.9=e-5k,故-5k=ln 0.9;又(1-0.19)P0=P0e-kt,即0.81=e-kt,故-kt=ln 0.81=2ln 0.9=-10k,故t=10.
答案:10
14.某人准备购置一块占地1 800平方米的矩形地块,中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如阴影部分所示),大棚占地面积为S平方米,其中a∶b=1∶2,若要使S最大,则y=________.
解析:由题意可得xy=1 800,b=2a,则y=a+b+3=3a+3,S=(x-2)a+(x-3)×b=(3x-8)a=(3x-8)×=1 808-3x-y=1 808-3x-×=1 808-≤1 808-2 =1 808-240=1 568,当且仅当3x=,即x=40时取等号,所以当S取得最大值时,y==45.
答案:45
15.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数;当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.
(1)当0<x≤20时,求函数v关于x的函数解析式;
(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
解:(1)由题意得当0<x≤4时,v=2;
当4<x≤20时,设v=ax+b,
显然v=ax+b在(4,20]内是减函数,
由已知得解得
所以v=-x+,故函数v=
(2)设年生长量为f(x)千克/立方米,依题意并由(1)可得,f(x)=
当0<x≤4时,f(x)为增函数,故f(x)max=f(4)=4×2=8;
当4<x≤20时,f(x)=-x2+x=-(x2-20x)=-(x-10)2+,f(x)max=f(10)=12.5.
所以当x=10时,f(x)的最大值为12.5.
即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.
16.某厂有一个容量300吨的水塔,每天从早六点到晚十点供应生活和生产用水,已知该厂生活用水每小时10吨,生产用水总量W(吨)与时间t(单位:小时,规定早晨六点时t=0)的函数关系为W=100,水塔的进水量有10级,第一级每小时进水10吨,以后每提高一级,进水量增加10吨.若某天水塔原有水100吨,在供应时同时打开进水管,问该天进水量应选择第几级,既能保证该厂用水(即水塔中水不空),又不会使水溢出?
解:设水塔进水量选择第n级,在t时刻水塔中的水容量y等于水塔中的存水量100吨加上进水量10nt吨,减去生活用水10t吨,再减去生产用水W=100吨,
即y=100+10nt-10t-100(0<t≤16).
若水塔中的水量既能保证该厂用水,又不会使水溢出,则一定有0<y≤300,即0<100+10nt-10t-100≤300,
所以-++1<n≤++1对一切t∈(0,16]恒成立.
因为-++1=-102+≤,
++1=202-≥,
所以<n≤,即n=4.即进水量应选择第4级.
17.某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是[10,100](单位:万元).现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加且资金不超过5万元,同时资金不超过投资收益的20%.
(1)若建立函数模型y=f(x)制定奖励方案,请你根据题意,写出奖励函数模型应满足的条件;
(2)现有两个奖励函数模型:(ⅰ)y=x+1;(ⅱ)y=log2x-2.试分析这两个函数模型是否符合公司要求.
解:(1)设奖励函数模型为y=f(x),
则该函数模型满足的条件是:
①当x∈[10,100]时,f(x)是增函数;
②当x∈[10,100]时,f(x)≤5恒成立;
③当x∈[10,100]时,f(x)≤恒成立.
(2)对于函数模型(ⅰ)y=x+1,
它在[10,100]上是增函数,满足条件①;
但当x=80时,y=5,因此,当x>80时,y>5,不满足条件②,故该函数模型不符合公司要求.
对于函数模型(ⅱ)y=log2x-2,它在[10,100]上是增函数,满足条件①;
x=100时,ymax=log2100-2=2log25<5,即f(x)≤5恒成立.满足条件②;
设h(x)=log2x-2-x,则h′(x)=-,
又x∈[10,100],所以≤≤,
所以h′(x)≤-<-=0,
所以h(x)在[10,100]上是递减的,因此h(x)≤h(10)=log210-4<0,即f(x)≤恒成立,满足条件③.
故该函数模型符合公司要求.
综上所述,函数模型(ⅱ)y=log2x-2符合公司要求.
新高考数学一轮复习课时跟踪检测(十三)函数模型及其应用(含解析): 这是一份新高考数学一轮复习课时跟踪检测(十三)函数模型及其应用(含解析),共8页。试卷主要包含了有一组实验数据如下表所示,某市生产总值连续两年持续增加等内容,欢迎下载使用。
高中数学高考课时跟踪检测(五十一) 统计 作业: 这是一份高中数学高考课时跟踪检测(五十一) 统计 作业,共7页。
高中数学高考课时跟踪检测(五) 函数及其表示 作业: 这是一份高中数学高考课时跟踪检测(五) 函数及其表示 作业,共4页。试卷主要包含了下面各组函数中是同一函数的是,函数y=eq \f的定义域为,具有性质等内容,欢迎下载使用。