![高中数学高考10第一部分 板块二 专题三 立体几何 第2讲 立体几何(大题)第1页](http://img-preview.51jiaoxi.com/3/3/14027691/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学高考10第一部分 板块二 专题三 立体几何 第2讲 立体几何(大题)第2页](http://img-preview.51jiaoxi.com/3/3/14027691/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学高考10第一部分 板块二 专题三 立体几何 第2讲 立体几何(大题)第3页](http://img-preview.51jiaoxi.com/3/3/14027691/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学高考10第一部分 板块二 专题三 立体几何 第2讲 立体几何(大题)
展开
这是一份高中数学高考10第一部分 板块二 专题三 立体几何 第2讲 立体几何(大题),共9页。
第2讲 立体几何(大题)热点一 平行、垂直关系的证明高考常考平行、垂直关系的解题策略:(1)证明空间中的平行、垂直关系的常用方法是转化,如证明面面平行时,可转化为证明线面平行,而证明线面平行时,可转化为证明线线平行,但有的时候证明线面平行时,也可先证明面面平行,然后再得出线面平行.(2)在证明时,常通过三角形、平行四边形、矩形等平面图形去寻找平行和垂直的关系.例1 (2018·北京)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD. 跟踪演练1 如图,在四棱锥P-ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD. 热点二 体积、距离的计算高考常考体积和距离问题的解题策略:(1)求空间几何体的体积的常用方法有换底法,转化法,割补法.换底法的一般思路是找出几何体的底面和高,看底面积和高是否容易计算,若较难计算,则转换顶点和底面,使得底面积和高都比较容易求出;转化法是利用一个几何体与某几何体之间的关系,转化为求该几何体的体积;对于较复杂的几何体,有时也进行分割和补形,间接求得体积.(2)求立体几何中的距离问题时常利用等体积法,即把要求的距离转化成一个几何体的高,利用同一个几何体的体积相等,转换这个几何体的顶点去求解.例2 (2019·东北三省三校模拟)如图,四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上,且AG=GD,BG⊥GC,GB=GC=2,四面体P-BCG的体积为.(1)求点D到平面PBG的距离;(2)若点F是棱PC上一点,且DF⊥GC,求的值. 跟踪演练2 (2019·淄博模拟)如图,在四棱锥P-ABCD中,AB∥CD,AB=1,CD=3,AP=2,DP=2,∠PAD=60°,AB⊥平面PAD,点M在棱PC上.(1)求证:平面PAB⊥平面PCD;(2)若直线PA∥平面MBD,求此时三棱锥P-MBD的体积. 热点三 翻折与探索性问题高考中翻折与探索性问题的解题策略:(1)翻折问题有一定的难度,在解题时,一定要先弄清楚在翻折过程中哪些量发生了变化,哪些量没有发生变化.一般情况下,长度不发生变化,而位置关系发生变化.再通过连线得到三棱锥、四棱锥等几何体,最后把问题转化到我们较熟悉的几何体中去解决.(2)对于探索性问题,一般根据问题的设问,首先假设其存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾就否定假设.例3 如图1,已知菱形AECD的对角线AC,DE交于点F,点E为AB中点.将△ADE沿线段DE折起到△PDE的位置,如图2所示.(1)求证:DE⊥平面PCF;(2)求证:平面PBC⊥平面PCF;(3)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由. 跟踪演练3 (2018·全国Ⅲ)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC.(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由. 真题体验(2019·全国Ⅰ,文,19)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离. 押题预测如图,在四棱锥P-ABCD中,平面ABCD⊥平面PAD,AD∥BC,AB=BC=AP=AD,∠ADP=30°,∠BAD=90°.(1)证明:PD⊥PB;(2)设点M在线段PC上,且PM=PC,若△MBC的面积为,求四棱锥P-ABCD的体积. A组 专题通关1.(2019·全国Ⅱ)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积. 2.(2019·哈尔滨模拟)如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=,四边形BDEF是正方形,且DE⊥平面ABCD.(1)求证:CF∥平面AED;(2)若AE=,求多面体ABCDEF的体积V. 3.(2019·长沙模拟)如图,在多边形ABPCD中(图1),ABCD为长方形,△BPC为正三角形,AB=3,BC=3,现以BC为折痕将△BPC折起,使点P在平面ABCD内的射影恰好在AD上(图2).(1)证明:PD⊥平面PAB;(2)若点E在线段PB上,且PE=PB,当点Q在线段AD上运动时,求三棱锥Q-EBC的体积. B组 能力提高4.(2019·潍坊模拟)如图,三棱柱ABC-A1B1C1中,CA=CB,∠BAA1=45°,平面AA1C1C⊥平面AA1B1B.(1)求证:AA1⊥BC;(2)若BB1=AB=2,∠A1AC=45°,D为CC1的中点,求三棱锥D-A1B1C1的体积. 5.如图,在矩形AB′DE中,AE=6,DE=5,被截去一角(即△BB′C),AB=3,∠ABC=135°,平面PAE⊥平面ABCDE,PA+PE=10.(1)求五棱锥P-ABCDE的体积的最大值;(2)在(1)的情况下,证明:BC⊥PB.
相关试卷
这是一份高中数学高考第1部分 板块2 核心考点突破拿高分 专题3 第2讲 立体几何(大题),共9页。
这是一份高中数学高考11第一部分 板块二 专题三 立体几何 规范答题示例3,共3页。试卷主要包含了 …………12分等内容,欢迎下载使用。
这是一份高中数学高考37第一部分 板块四 回扣5 立体几何,共3页。试卷主要包含了三视图,柱、锥、台、球体的表面积和体积,几种角的范围等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)