搜索
    上传资料 赚现金
    【新高考】2023年高考数学二轮复习精讲精练学案——第14讲 解三角形(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      第十四讲解三角形原卷版.docx
    • 第十四讲解三角形解析版.docx
    【新高考】2023年高考数学二轮复习精讲精练学案——第14讲 解三角形(原卷版+解析版)01
    【新高考】2023年高考数学二轮复习精讲精练学案——第14讲 解三角形(原卷版+解析版)02
    【新高考】2023年高考数学二轮复习精讲精练学案——第14讲 解三角形(原卷版+解析版)03
    【新高考】2023年高考数学二轮复习精讲精练学案——第14讲 解三角形(原卷版+解析版)01
    【新高考】2023年高考数学二轮复习精讲精练学案——第14讲 解三角形(原卷版+解析版)02
    【新高考】2023年高考数学二轮复习精讲精练学案——第14讲 解三角形(原卷版+解析版)03
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【新高考】2023年高考数学二轮复习精讲精练学案——第14讲 解三角形(原卷版+解析版)

    展开
    这是一份【新高考】2023年高考数学二轮复习精讲精练学案——第14讲 解三角形(原卷版+解析版),文件包含第十四讲解三角形解析版docx、第十四讲解三角形原卷版docx等2份学案配套教学资源,其中学案共37页, 欢迎下载使用。

    正弦定理
    在中,(为外接圆半径).
    变形形式:(1)
    余弦定理
    ①;②;③。
    推论:①;②;③
    三角形面积公式

    重要结论
    在中,分别为角的对边,.
    (2)内角和定理:
    = 1 \* GB3 \* MERGEFORMAT ①
    同理有:,.
    = 2 \* GB3 \* MERGEFORMAT ②;
    = 3 \* GB3 \* MERGEFORMAT ③斜三角形中,
    = 4 \* GB3 \* MERGEFORMAT ④;
    = 5 \* GB3 \* MERGEFORMAT ⑤在中,内角成等差数列.
    【典型题型讲解】
    考点一:正、余弦定理
    【典例例题】
    例1.(2022·广东揭阳·高三期末)在中,角所对的边分别为,且.
    (1)求角;
    (2)若,且的面积为,且,求和的值.
    例2.(2022·广东·铁一中学高三期末)在①,②,③这三个条件中任选一个,补充在下面的横线上,并加以解答.
    已知的内角,,所对的边分别是,,,若______.
    (1)求角;
    (2)若,求周长的最小值,并求出此时的面积.
    【方法技巧与总结】
    在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:
    (1)若式子含有的齐次式,优先考虑正弦定理,“角化边”;
    (2)若式子含有的齐次式,优先考虑正弦定理,“边化角”;
    (3)若式子含有的齐次式,优先考虑余弦定理,“角化边”;
    (4)代数变形或者三角恒等变换前置;
    (5)含有面积公式的问题,要考虑结合余弦定理使用;
    (6)同时出现两个自由角(或三个自由角)时,要用到.
    【变式训练】
    1.(2022·广东东莞·高三期末)的内角、、的对边分别为、、,已知.
    (1)求;
    (2)若,的面积为,求的周长.
    2.(2022·广东汕尾·高三期末)中,内角A,B,C所对的边分别为a,b,c,且
    (1)求角B
    (2)当b=3时,求的面积的最大值.
    3.(2022·广东惠州·一模)在△ABC中,内角A,B,C所对的边分别为a,b,c,,且.
    (1)求证:;
    (2)当时,求.
    4.(2022·广东·一模)在中,角的对边分别为,下面给出有关的三个论断:①;②;③.
    化简上述三个论断,求出角的值或角的关系,并以其中两个论断作为条件,余下的一个论断作为结论,写出所有可能的真命题.(不必证明)
    论断①:;论断②:或;论断③:;所有可能的真命题有:①③②和①②③.
    5.(2022·广东湛江·一模)已知在中,角A,B,C的对边分别为a,b,c,.
    (1)求角A的大小;
    (2)若,求周长的最大值.
    6.(2022·广东广州·一模)△的内角A,B,C的对边分别为a,b,c,已知△的面积为.
    (1)证明:;
    (2)若,求.
    7.(2022·广东汕头·一模)在①;②的面积为;③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在中,a,b,c分别为内角A,B,C的对边,,, ______?.
    考点二:正弦、余弦定理在几何中的应用
    【典例例题】
    例1.(2022·广东佛山·高三期末)中,内角A,B,C所对的边分别为a,b,c,且.
    (1)求角A的大小;
    (2)若边上的中线,求的面积.
    例2.(2022·广东汕头·高三期末)在△ABC中,角A,B,C所对的边分别a,b,c.已知2bcsB=ccsA+acsC.
    (1)求B;
    (2)若a=2,,设D为CB延长线上一点,且AD⊥AC,求线段BD的长.
    例3.(2022·广东珠海·高三期末)在中,角A,B,C所对的边分别为a,b,c,且.
    (1)求B;
    (2)已知,D为边上的一点,若,,求的长.
    【方法技巧与总结】
    利用平面向量的有关知识如向量数量积将向量问题转化为三角函数形式,再利用三角函数转化求解.
    【变式训练】
    1.(2022·广东中山·高三期末)在中,内角A,B,C的对边分别为a,b,c,且.
    (1)求A;
    (2)如图,已知,D为的中点,点P在上,且满足,求的面积.
    2.(2022·广东·金山中学高三期末)如图,在平面四边形中,,,.
    (1)若,求的面积;
    (2)若,,求.
    3.(2022·广东清远·高三期末)在平面四边形中,.
    (1)求;
    (2)求的面积.
    4.如图,在中,对边分别为,且.
    (1)求角的大小;
    (2)已知,若为外接圆劣弧上一点,且,求四边形的面积.
    5.(2022·广东梅州·二模)在中,点在上,平分,已知,,
    (1)求的长;
    (2)求的值.
    6.(2022·广东广州·二模)在平面四边形中,.
    (1)求的面积;
    (2)若,求的值;
    【巩固练习】
    一、单选题
    1.记的内角A,B,C的对边分别为a,b,c,,,,则的值为( )
    A.B.C.D.
    2.在△ABC中,内角A,B,C所对的边分别为a,b,c,且,则的值为( )
    A.4B.5C.6D.7
    3.(2022·黑龙江·哈九中模拟预测(理))记的内角A,B,C的对边分别为a,b,c,,,.则的值为( )
    A. B. C.D.
    4.(2022·北京昌平·二模)在△中,只需添加一个条件,即可使△存在且唯一.条件:①; ②;③中,所有可以选择的条件的序号为( )
    A.①B.①②C.②③D.①②③
    二、多选题
    5.(2022·全国·高三专题练习)内角,,的对边分别为,,.已知,且,则下列结论正确的是( )
    A.B.
    C.的周长为D.的面积为
    6.(2022·河北·石家庄二中模拟预测)已知中,为外接圆的圆心,为内切圆的圆心,则下列叙述正确的是( )
    A.外接圆半径为B.内切圆半径为
    C.D.
    三、填空题
    7.(2022·河北·高三期中)已知中角A,B,C所对的边分别为a,b,c,,则的面积,该公式称作海伦公式,最早由古希腊数学家阿基米德得出.若的周长为15,,则的面积为___________________.
    8.在△中,角A,B,C的对边分别为a,b,c,满足,,则___________.
    四、解答题
    9.已知在三角形中,,三角形的面积.
    (1)若,求;
    (2)若,求.
    10.在中,角A,B,C所对的边分别为a,b,c,且.
    (1)求角A的大小;
    (2)若,的面积为4,求BC边上的高.
    11.在中..
    (1)求角;
    (2)若,点是线段的中点,于点,且,求的长.
    12.已知对任意,,都有:,若的内角A、B、C的对边分别为a、b、c.,且.
    (1)求c;
    (2)若,过点C作,垂足为H,若,求的面积S.
    相关学案

    【新高考】2023年高考数学二轮复习精讲精练学案——第26讲 圆锥曲线(原卷版+解析版): 这是一份【新高考】2023年高考数学二轮复习精讲精练学案——第26讲 圆锥曲线(原卷版+解析版),文件包含第二十六讲圆锥曲线解析版docx、第二十六讲圆锥曲线原卷版docx等2份学案配套教学资源,其中学案共61页, 欢迎下载使用。

    【新高考】2023年高考数学二轮复习精讲精练学案——第23讲 计数原理(原卷版+解析版): 这是一份【新高考】2023年高考数学二轮复习精讲精练学案——第23讲 计数原理(原卷版+解析版),文件包含第二十三讲计数原理解析版docx、第二十三讲计数原理原卷版docx等2份学案配套教学资源,其中学案共29页, 欢迎下载使用。

    【新高考】2023年高考数学二轮复习精讲精练学案——第19讲 直线、平面平行的判定与性质(原卷版+解析版): 这是一份【新高考】2023年高考数学二轮复习精讲精练学案——第19讲 直线、平面平行的判定与性质(原卷版+解析版),文件包含第十九直线平面平行的判定与性质解析版docx、第十九直线平面平行的判定与性质原卷版docx等2份学案配套教学资源,其中学案共42页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【新高考】2023年高考数学二轮复习精讲精练学案——第14讲 解三角形(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map