所属成套资源:2023年中考数学一轮复习考点 通关练习题(含答案)
2023年中考数学一轮复习考点《全等三角形》通关练习题(含答案)
展开这是一份2023年中考数学一轮复习考点《全等三角形》通关练习题(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习考点
《全等三角形》通关练习题
一 、选择题
1.下列说法正确的有( )
①两个图形全等,它们的形状相同;
②两个图形全等,它们的大小相同;
③面积相等的两个图形全等;
④周长相等的两个图形全等.
A.1个 B.2个 C.3个 D.4个
2.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那幅图是( )
3.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为( )
A.40° B.30° C.35° D.25°
4.下列判断中错误的是( )
A.有两角和一边对应相等的两个三角形全等
B.有两边和一角对应相等的两个三角形全等
C.有两边和其中一边上的中线对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
5.如图,将两根钢条AA′、BB′的中点 O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( )
A.SAS B.ASA C.SSS D.AAS
6.山脚下有A、B两点,要测出A、B两点间的距离.在地上取一个可以直接到达A、B点的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE.可以证△ABC≌△DEC,得DE=AB,因此,测得DE的长就是AB的长.判定△ABC≌△DEC的理由是( )
A.SSS B.ASA C.AAS D.SAS
7.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.
以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.
其中结论正确的个数是( )
A.1 B.2 C.3 D.4
8.阅读下面材料:在数学课上,老师提出如下问题:
尺规作图1,作一个角等于已知角.
已知:∠AOB.
求作:∠A′O′B′,使∠A′O′B′=∠AO
小明同学作法如下,如图2:
①作射线O′A′;
②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D;
③以点O′为圆心,以OC长为半径作弧,交O′A′于C′;
④以点C′为圆心,以CD为半径作弧,交③中所画弧于D′;
⑤过点D′作射线O′B′,则∠A′O′B′就是所求的角.
老师肯定小明的作法正确,则小明作图的依据是( )
A.两直线平行,同位角相等
B.两平行线间的距离相等
C.全等三角形的对应角相等
D.两边和夹角对应相等的两个三角形全等
二 、填空题
9.由同一张底片冲洗出来的五寸照片和七寸照片_____全等图形(填“是”或“不是”).
10.如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A= .
11.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得到△AOD≌△COB,从而可以得到AD= .
12.在△ABC和△FED中,BE=FC,∠A=∠D.当添加条件 时(只需填写一个你认为正确的条件),就可得到△ABC≌△DFE,依据是 .
13.如图,在四边形ABCD中,AD∥BC,沿AM对折,使点D落在BC上点N处.若∠D=90°,∠AMD=60°,则∠ANB= ,∠CMN= .
14.如图,旗杆AC与旗杆BD相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是 s.
三 、解答题
15.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB.
求证:AE=CE.
16.已知:∠AOB.
求作:∠A′O′B′,使得∠A′O′B′=∠AOB.
作法:
①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;
②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
③以点C′为圆心,CD长为半径画弧,与第②步中所画的弧相交于点D′;
④过点D′画射线O′B′,则∠A′O′B′=∠AOB.
根据上面的作法,完成以下问题:
(1)使用直尺和圆规,作出∠A′O′B′(请保留作图痕迹).
(2)完成下面证明∠A′O′B′=∠AOB的过程(注:括号里填写推理的依据).
证明:由作法可知O′C′=OC,O′D′=OD,D′C′= ,
∴△C′O′D′≌△COD( )
∴∠A′O′B′=∠AOB.( )
17.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:
①在河流的一条岸边B点,选对岸正对的一棵树A;
②沿河岸直走20m有一树C,继续前行20m到达D处;
③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;
④测得DE的长为5米.
求:(1)河的宽度是多少米?
(2)请你证明他们做法的正确性.
18.如图,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足.
求证:①AC=AD; ②CF=DF.
19.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.
求证:(1)AF=CG;
(2)CF=2DE.
20.如图,在平面直角坐标系中,O为坐标原点.A、B两点的坐标分别为A(m,0)、B(0,n),且|m﹣n−3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.
(1)求OA、OB的长;
(2)连接PB,若△POB的面积不大于3且不等于0,求t的范围;
(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.
答案
1.B
2.C.
3.C
4.B
5.A
6.D
7.D
8.C.
9.答案为:不是
10.答案为:30°.
11.答案为:∠COB,SAS,CB.
12.答案为:∠B=∠DEC,AAS
13.答案为:60°,60°.
14.答案为:3.
15.证明:∵FC∥AB,
∴∠A=∠ECF,∠ADE=∠CFE,
在△ADE和△CFE中,
,
∴△ADE≌△CFE(AAS),
∴AE=CE.
16.解:(1)如图所示,∠A′O′B′即为所求;
(2)证明:由作法可知O′C′=OC,O′D′=OD,D′C′=DC,
∴△C′O′D′≌△COD(SSS)
∴∠A′O′B′=∠AOB.(全等三角形的对应角相等)
故DC,SSS,全等三角形的对应角相等.
17.解:(1)河的宽度是5m;
(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,
在Rt△ABC和Rt△EDC中,
∴Rt△ABC≌Rt△EDC(ASA),
∴AB=ED,
即他们的做法是正确的.
18.证明:①∵AB=AE,BC=ED,∠B=∠E,
∴△ABC≌△AED(SAS),
∴AC=AD,
②∵△ABC≌△AED
AC=AD
∵AF⊥CD,
∴∠AFC=∠AFD=90°
∵AF=AF
∴△AFC≌△AFD(SAS)
∴CF=FD.
19.证明:(1)∵∠ACB=90°,AC=BC,
∴∠CAB=45°,
∵CG平分∠ACB,
∴∠BCG=∠ACB=45°,
∴∠CAB=∠BCG,
在△ACF和△CBG中,
,
∴△ACF≌△CBG(ASA),
∴AF=CG.
(2)如图,延长CG交AB于点H.
∵AC=BC, CG平分∠ACB,
∴CH⊥AB,且点H是AB的中点,
又∵AD⊥AB,
∴CH∥AD,
∴∠D=∠CGE,
又∵点H是AB的中点,
∴点G是BD的中点,
∴DG=GB,
∵△ACF≌△CBG,
∴CF=BG,
∴CF=DG,
∵E为AC边的中点,
∴AE=CE,
在△AED和△CEG中,
,
∴△AED≌△CEG(AAS),
∴DE=GE,
∴DG=2DE,
又∵CF=DG,
∴CF=2DE.
20.解:(1)∵由题意可知,
∴m﹣n﹣3=0,2n﹣6=0,解得:n=3,m=6,
∴OA=6,OB=3;
(2)分为两种情况:
①当P在线段OA上时,AP=t,PO=6﹣t,
∴△BOP的面积S=×(6﹣t)×3=9﹣t,
∵若△POB的面积不大于3且不等于0,
∴0<9﹣ t≤3,解得:4≤t<6;
②当P在线段OA的延长线上时,如图,
AP=t,PO=t﹣6,∴△BOP的面积S=
×(t﹣6)×3=t﹣9,
∵若△POB的面积不大于3且不等于0,
∴0<t﹣9≤3,解得:6<t≤8;
即t的范围是4≤t≤8且t≠6;
(3)分为两种情况:①当OP=OA=6时,E应和B重合,但是此时PE和AB又不垂直,
即此种情况不存在;
②当OP=OB=3时,分为两种情况(如图):第一个图中t=3,
第二个图中AP=6+3=9,即t=9;
即存在这样的点P,使△EOP≌△AOB,t的值是3或9.
相关试卷
这是一份2023年中考数学一轮复习考点《图形的对称》通关练习题(含答案),共8页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习考点《视图与投影》通关练习题(含答案),共7页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习考点《实数》通关练习题(含答案),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。