所属成套资源:2023年中考数学一轮复习考点 通关练习题(含答案)
2023年中考数学一轮复习考点《解直角三角形》通关练习题(含答案)
展开
这是一份2023年中考数学一轮复习考点《解直角三角形》通关练习题(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习考点《解直角三角形》通关练习题一 、选择题1.tan60°的值等于( )A.1 B. C. D.22.如图,在△ABC中,∠C=90°,AD是BC边上的中线,BD=4,AD=2,则tan∠CAD的值是( ) A.2 B. C. D.3.在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为( )A.6 B.7.5 C.8 D.12.54.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二踩档与第三踩档的正中间处有一条60 cm长的绑绳EF,tanα=2.5,则“人字梯”的顶端离地面的高度AD是( ) A.144 cm B.180 cm C.240 cm D.360 cm5.如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为( )A.4 B.2 C. D.6.某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为( )(精确到1米, =1.732). A.585米 B.1014米 C.805米 D.820米7.如图,△ABC的顶点都在正方形网格的格点上,则tan∠BAC的值为( )A.2 B. C. D.8.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,过点B作BE∥AC,过点C作CE∥DB,BE、CE交于点E,连接DE,则tan∠EDC=( )A. B. C. D.二 、填空题9.在△ABC中,∠C=90°,AB=13,BC=5,则tanB=________.10.如图,∠BAC位于6×6的方格纸中,其中A,B,C均为格点,则tan∠BAC= .11.如图,圆O的直径CD=10 cm,且AB⊥CD,垂足为P,AB=8 cm,则sin∠OAP=_______.12.4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是 米.13.如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为______ 米.14.已知等边△ABC,点E是AB上一点,AE=3,点D在AC的延长线上,∠ABD+∠BCE=120°,tan∠D=,则CD= .三 、解答题15.计算:|-2|×cos60°-()-1; 16.计算:sin60°+cos45°-tan60°-cos30°. 17.先化简,再求代数式的值,其中a=2sin60°+tan45°. 18.如图,在△ABC中,AB=AC,D为BC的中点,四边形ABDE是平行四边形.(1)求证:四边形ADCE是矩形;(2)若AC、DE交于点O,四边形ADCE的面积为,CD=4,求∠AOD的度数. 19.两栋居民楼之间的距离CD=30m,楼AC和BD均为10层,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层?(参考数据:≈1.7,≈1.4) 20.筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为3m的筒车⊙O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P首次到达最高点?(2)浮出水面3.4秒后,盛水筒P距离水面多高?(3)若接水槽MN所在直线是⊙O的切线,且与直线AB交于点M,MO=8m.求盛水筒P从最高点开始,至少经过多长时间恰好在直线MN上.(参考数据:cos43°=sin47°≈,sin16°=cos74°≈,sin22°=cos68°≈)
答案1.C2.A3.A4.B5.A6.C.7.C8.B.9.答案为:A.10.答案为:11.答案为:1.5.12.答案为:.13.答案为:200+200.14.答案为:(米).15.答案为:.16.原式=2×-3=-2.17.原式=×+×-×-×=+--=-.18.解:= ,所以原式=19. (1)证明:∵四边形ABDE是平行四边形,∴AE∥BC,AB=DE,AE=BD.∵D为BC中点,∴CD=BD.∴CD∥AE,CD=AE.∴四边形ADCE是平行四边形.∵AB=AC,D为BC中点,∴AD⊥BC,即∠ADC=90°,∴平行四边形ADCE是矩形.(2)解:∵平行四边形ADCE是矩形,四边形ADCE的面积为,CD=4,∴AD•CD=4AD=16,DO=AO=CO=EO,解得:AD=4,∴tan∠DAC===,∴∠DAC=30°,∴∠ODA=30°,∴∠AOD=120°.20.解:设太阳光线GB交AC于点F,过F作FH⊥BD于H,由题意知,AC=BD=3×10=30m,FH=CD=30m,∠BFH=∠α=30°,答:此刻楼BD的影子会遮挡到楼AC的第5层.21.解:(1)如图1中,连接OA.由题意,筒车每秒旋转360°×÷60=5°,在Rt△ACO中,cos∠AOC===.∴∠AOC=43°,∴=27.4(秒).答:经过27.4秒时间,盛水筒P首次到达最高点.(2)如图2中,盛水筒P浮出水面3.4秒后,此时∠AOP=3.4×5°=17°,∴∠POC=∠AOC+∠AOP=43°+17°=60°,过点P作PD⊥OC于D,在Rt△POD中,OD=OP•cos60°=3×=1.5(m),2.2﹣1.5=0.7(m),答:浮出水面3.4秒后,盛水筒P距离水面0.7m.(3)如图3中,∵点P在⊙O上,且MN与⊙O相切,∴当点P在MN上时,此时点P是切点,连接OP,则OP⊥MN,在Rt△OPM中,cos∠POM==,∴∠POM=68°,在Rt△COM中,cos∠COM===,∴∠COM=74°,∴∠POH=180°﹣∠POM﹣∠COM=180°﹣68°﹣74°=38°,∴需要的时间为=7.6(秒),答:盛水筒P从最高点开始,至少经过7.6秒恰好在直线MN上.
相关试卷
这是一份2023年中考数学一轮复习考点《图形的对称》通关练习题(含答案),共8页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习考点《视图与投影》通关练习题(含答案),共7页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习考点《实数》通关练习题(含答案),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。