搜索
    上传资料 赚现金
    2023年中考数学复习专项专练专题10 二次函数及答案(四川版)
    立即下载
    加入资料篮
    2023年中考数学复习专项专练专题10 二次函数及答案(四川版)01
    2023年中考数学复习专项专练专题10 二次函数及答案(四川版)02
    2023年中考数学复习专项专练专题10 二次函数及答案(四川版)03
    还剩15页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年中考数学复习专项专练专题10 二次函数及答案(四川版)

    展开
    这是一份2023年中考数学复习专项专练专题10 二次函数及答案(四川版),共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题10 二次函数
    一、单选题
    1.(2022·四川广安)已知抛物线y=ax2 +bx +c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc >0;②2c﹣3b <0;③5a +b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1

    A.1 B.2 C.3 D.4
    【答案】C
    【解析】
    【分析】
    根据二次函数的图象与性质一一判断即可.
    【详解】
    解:由图像可知,开口向上,图像与y轴负半轴有交点,则,,
    对称轴为直线,则,
    ∴,故①正确;
    当时,,
    ∵,
    ∴,即
    ∴,故②正确;
    ∵对称轴为直线,
    ∴抛物线与x轴负半轴的交点为(,0),
    ∴,
    ∵,
    两式相加,则,
    ∴,故③错误;
    ∵,,,
    ∴,
    ∴根据开口向上,离对称轴越近其对应的函数值越小,则有,故④正确;
    ∴正确的结论有3个,
    故选:C
    【点睛】
    本题考查了二次函数的图象及性质;熟练掌握二次函数图象及性质,能够通过函数图象提取信息是解题的关键.
    2.(2022·四川达州)二次函数的部分图象如图所示,与y轴交于,对称轴为直线.以下结论:①;②;③对于任意实数m,都有成立;④若,,在该函数图象上,则;⑤方程(,k为常数)的所有根的和为4.其中正确结论有(       )

    A.2 B.3 C.4 D.5
    【答案】A
    【解析】
    【分析】
    根据图象可判断,即可判断①正确;令,解得,根据图得,,即可求出a的范围,即可判断②错误;由代入变形计算即可判断③错误;由抛物线的增减性和对称性即可判断④错误;将所求的方程解的问题转化为抛物线与两直线的交点问题,根据交点的个数,以及抛物线的对称性可知⑤错误.
    【详解】
    二次函数的部分图象与y轴交于,对称轴为直线,抛物线开头向上,


    ,故①正确;
    令,
    解得,
    由图得,,
    解得,故②正确;

    可化为,即,

    若成立,则,故③错误;
    当时,随的增大而减小,


    对称轴为直线,
    时与时所对应的值相等,
    ,故④错误;
    (,k为常数)的解,是抛物线与直线y=±k的交点的横坐标,
    则(,k为常数)解的个数可能有2个,3个或4个,
    根据抛物线的对称性可知,
    当有3个或4个交点时,(,k为常数)的所有解的和是4,
    当有2个交点时,即k=0时,(,k为常数)的所有解的和是2,
    故⑤错误;
    综上,正确的个数为2,
    故选:A.
    【点睛】
    本题考查了二次函数图象和性质,一元二次方程求根公式,根与系数的关系等,熟练掌握知识点,能够运用数形结合的思想是解题的关键.
    3.(2020·四川眉山)已知二次函数(为常数)的图象与轴有交点,且当时,随的增大而增大,则的取值范围是(     )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】
    根据图象与x轴有交点,得出判别式△≥0,从而解得a≥-2,然后求出抛物线的对称轴,结合抛物线开口向上,且当时,y随x的增大而增大,可得a≤3,从而得出选项.
    【详解】
    解:
    ∵图象与x轴有交点,
    ∴△=(-2a)2-4(a2-2a-4)≥0
    解得a≥-2;
    ∵抛物线的对称轴为直线
    抛物线开口向上,且当时,y随x的增大而增大,
    ∴a≤3,
    ∴实数a的取值范围是-2≤a≤3.
    故选:D.
    【点睛】
    本题考查了抛物线与x轴的交点,明确抛物线与x轴的交点个数与判别式的关系及二次函数的性质是解题的关键.
    二、填空题
    4.(2021·四川巴中)y与x之间的函数关系可记为y=f(x).例如:函数y=x2可记为f(x)=x2.若对于自变量取值范围内的任意一个x,都有f(﹣x)=f(x),则f(x)是偶函数;若对于自变量取值范围内的任意一个x,都有f(﹣x)=﹣f(x),则f(x)是奇函数.例如:f(x)=x2是偶函数,f(x)是奇函数.若f(x)=ax2+(a﹣5)x+1是偶函数,则实数a=__________.
    【答案】5
    【解析】
    【分析】
    由f(x)=ax2+(a-5)x+1是偶函数,得a(-x)2+(a-5)•(-x)+1=ax2+(a-5)x+1,解得a=5.
    【详解】
    解:∵f(x)=ax2+(a-5)x+1是偶函数,
    ∴对于自变量取值范围内的任意一个x,都有f(-x)=f(x),即a(-x)2+(a-5)•(-x)+1=ax2+(a-5)x+1,
    ∴(10-2a)x=0,可知10-2a=0,
    ∴a=5,
    故答案为:5.
    【点睛】
    本题考查新定义:偶函数与奇函数,解题的关键是理解偶函数定义,列出a(-x)2+(a-5)•(-x)+1=ax2+(a-5)x+1.
    5.(2020·四川巴中)现有一“祥云”零件剖面图,如图所示,它由一个半圆和左右两支抛物线的一部分组成,且关于y轴对称.其中半圆交y轴于点E,直径,;两支抛物线的顶点分别为点A、点B.与x轴分别交于点C、点D;直线BC的解析式为:.则零件中BD这段曲线的解析式为_________.

    【答案】
    【解析】
    【分析】
    记AB与y轴的交点为F,根据图象关于y轴对称且直径AB=2,OE=2得出点B(1,1),由点B坐标求出直线BC解析式,据此得出点C坐标,继而得出点D坐标,将点D坐标代入右侧抛物线解析式y=a(x﹣1)2+1,求出a的值即可得出答案.
    【详解】
    解:记AB与y轴的交点为F,

    ∵AB=2,且半圆关于y轴对称,
    ∴FA=FB=FE=1,
    ∵OE=2,
    ∴,
    则右侧抛物线的顶点B坐标为,
    将点代入得,
    解得,
    ∴,
    当时,,
    解得,
    ∴,
    则,
    设右侧抛物线解析式为,
    将点代入解析式得,
    解得,
    ∴.
    故答案为:.
    【点睛】
    本题主要考查二次函数的应用,解题的关键是根据轴对称图形的性质得出点B坐标及熟练运用待定系数法求函数解析式.
    6.(2022·四川成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是_________;当时,的取值范围是_________.

    【答案】         
    【解析】
    【分析】
    根据题意,得-45+3m+n=0,,确定m,n的值,从而确定函数的解析式,根据定义计算确定即可.
    【详解】
    根据题意,得-45+3m+n=0,,
    ∴ ,
    ∴ ,
    解得m=50,m=10,
    当m=50时,n=-105;当m=10时,n=15;
    ∵抛物线与y轴交于正半轴,
    ∴n>0,
    ∴,
    ∵对称轴为t==1,a=-5<0,
    ∴时,h随t的增大而增大,
    当t=1时,h最大,且(米);当t=0时,h最最小,且(米);
    ∴w=,
    ∴w的取值范围是,
    故答案为:.
    当时,的取值范围是
    ∵对称轴为t==1,a=-5<0,
    ∴时,h随t的增大而减小,
    当t=2时,h=15米,且(米);当t=3时,h最最小,且(米);
    ∴w=,w=,
    ∴w的取值范围是,
    故答案为:.
    【点睛】
    本题考查了待定系数法确定抛物线的解析式,函数的最值,增减性,对称性,新定义计算,熟练掌握函数的最值,增减性,理解新定义的意义是解的关键.
    7.(2021·四川德阳)已知函数y的图象如图所示,若直线y=kx﹣3与该图象有公共点,则k的最大值与最小值的和为 _____.

    【答案】17
    【解析】
    【分析】
    根据题意可知,当直线经过点(1,12)时,直线y=kx-3与该图象有公共点;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它们的和为17.
    【详解】
    解:当直线经过点(1,12)时,12=k-3,解得k=15;
    当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,
    整理得x2-(10+k)x+36=0,
    ∴10+k=±12,解得k=2或k=-22(舍去),
    ∴k的最大值是15,最小值是2,
    ∴k的最大值与最小值的和为15+2=17.
    故答案为:17.
    【点睛】
    本题考查分段函数的图象与性质,一次函数图象上点的坐标特征,结合图象求出k的最大值和最小值是解题的关键.
    8.(2021·四川南充)关于抛物线,给出下列结论:①当时,抛物线与直线没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则.其中正确结论的序号是________.
    【答案】②③
    【解析】
    【分析】
    先联立方程组,得到,根据判别式即可得到结论;②先求出a<1,分两种情况:当0<a<1时,当a<0时,进行讨论即可;③求出抛物线的顶点坐标为:,进而即可求解.
    【详解】
    解:联立,得,
    ∴∆=,当时,∆有可能≥0,
    ∴抛物线与直线有可能有交点,故①错误;
    抛物线的对称轴为:直线x=,
    若抛物线与x轴有两个交点,则∆=,解得:a<1,
    ∵当0<a<1时,则>1,此时,x<,y随x的增大而减小,
    又∵x=0时,y=1>0,x=1时,y=a-1<0,
    ∴抛物线有一个交点在点(0,0)与(1,0)之间,
    ∵当a<0时,则<0,此时,x>,y随x的增大而减小,
    又∵x=0时,y=1>0,x=1时,y=a-1<0,
    ∴抛物线有一个交点在点(0,0)与(1,0)之间,
    综上所述:若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间,故②正确;
    抛物线的顶点坐标为:,
    ∵,
    ∴抛物线的顶点所在直线解析式为:x+y=1,即:y=-x+1,
    ∵抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),
    ∴,解得:,故③正确.
    故答案是:②③.
    【点睛】
    本题主要考查二次函数的图像和性质,掌握二次函数与二次方程的联系,熟练应用判别式判断一元二次方程根的情况,是解题的关键.
    9.(2020·四川内江)已知抛物线(如图)和直线.我们规定:当x取任意一个值时,x对应的函数值分别为和.若,取和中较大者为M;若,记.①当时,M的最大值为4;②当时,使的x的取值范围是;③当时,使的x的值是,;④当时,M随x的增大而增大.上述结论正确的是____(填写所有正确结论的序号)

    【答案】②④
    【解析】
    【分析】
    根据题目中的较大者M的定义逐个分析即可.
    【详解】
    解:对于①:当时,,,显然只要,则M的值为,故①错误;
    对于②:当时,在同一直角坐标系内画出的图像,如下图所示,其中红色部分即表示M,联立的函数表达式,即,求得交点横坐标为和,观察图形可知的x的取值范围是,故②正确;

    对于③:当时,在同一直角坐标系内画出的图像,如下图所示,其中红色部分即表示M,

    联立的函数表达式,即,求得其交点的横坐标为和,
    故M=3时分类讨论:当时,解得或,当时,解得,故③错误;
    对于④:当时,函数,此时图像一直在图像上方,如下图所示,故此时M=,故M随x的增大而增大,故④正确.

    故答案为:②④.
    【点睛】
    本题考查了二次函数与一次函数的图像性质及交点坐标,本题的关键是要能理解M的含义,学会用数形结合的方法分析问题.
    10.(2020·四川乐山)我们用符号表示不大于的最大整数.例如:,.那么:
    (1)当时,的取值范围是______;
    (2)当时,函数的图象始终在函数的图象下方.则实数的范围是______.
    【答案】          或
    【解析】
    【分析】
    (1)首先利用的整数定义根据不等式确定其整数取值范围,继而利用取整函数定义精确求解x取值范围.
    (2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数.
    【详解】
    (1)因为表示整数,故当时,的可能取值为0,1,2.
    当取0时, ;当取1时, ;当=2时,.
    故综上当时,x的取值范围为:.
    (2)令,,,
    由题意可知:,.
    ①当时,=,,在该区间函数单调递增,故当时, ,得.
    ②当时,=0, 不符合题意.
    ③当时,=1, ,在该区间内函数单调递减,故当取值趋近于2时,,得,
    当时,,因为 ,故,符合题意.
    故综上:或.
    【点睛】
    本题考查函数的新定义取整函数,需要有较强的题意理解能力,分类讨论方法在此类型题目极为常见,根据不同区间函数单调性求解参数为常规题型,需要利用转化思想将非常规题型转化为常见题型.
    三、解答题
    11.(2021·四川内江)如图,抛物线与轴交于、两点,与轴交于点.直线与抛物线交于、两点,与轴交于点,点的坐标为.
    (1)求抛物线的解析式与直线的解析式;
    (2)若点是抛物线上的点且在直线上方,连接、,求当面积最大时点的坐标及该面积的最大值;
    (3)若点是轴上的点,且,求点的坐标.

    【答案】(1)抛物线的解析式为,直线的解析式为;(2)的面积的最大值为,.(3)的坐标为或.
    【解析】
    【分析】
    (1)利用待定系数法解决问题即可.
    (2)如图1中,过点P作PE∥y轴交AD于点E.设P(m,-m2+m+3),则E(m,m+1).因为S△PAD=•(xD-xA)•PE=3PE,所以PE的值最大值时,△PAD的面积最大,求出PE的最大值即可.
    (3)如图2中,将线段AD绕点A逆时针旋转90°得到AT,则T(-5,6),设DT交y轴于点Q,则∠ADQ=45°,作点T关于AD的对称点T′(1,-6),设DQ′交y轴于点Q′,则∠ADQ′=45°,分别求出直线DT,直线DT′的解析式即可解决问题.
    【详解】
    解:(1)抛物线与轴交于、两点,
    设抛物线的解析式为,
    解得,,或,
    在抛物线上,

    解得,
    抛物线的解析式为,
    直线经过、,
    设直线的解析式为,
    则,
    解得,,
    直线的解析式为;
    (2)如图1中,过点作轴交于点.设,则.


    的值最大值时,的面积最大,


    时,的值最大,最大值为,此时的面积的最大值为,.
    (3)如图2中,将线段绕点逆时针旋转得到,则,

    设交轴于点,则,

    直线的解析式为,

    作点关于的对称点,
    则直线的解析式为,
    设交轴于点,则,

    综上所述,满足条件的点的坐标为或.
    【点睛】
    本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建二次函数解决最值问题,学会构造特殊三角形解决问题.
    12.(2022·四川广安)如图,在平面直角坐标系中,抛物线(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,-4),点C坐标为(2,0).


    (1)求此抛物线的函数解析式.
    (2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
    (3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
    【答案】(1)
    (2)(-2,-4)
    (3)P点坐标为:(-1,3),(-1,-5),,
    【解析】
    【分析】
    (1)直接将B(0,-4),C(2,0)代入,即可求出解析式;
    (2)先求出直线AB关系式为:,直线AB平移后的关系式为:,当其与抛物线只有一个交点时,此时点D距AB最大,此时△ABD的面积最大,由此即可求得D点坐标;
    (3)分三种情况讨论,①当∠PAB=90°时,即PA⊥AB,则设PA所在直线解析式为:,将A(-4,0)代入得,解得:,此时P点坐标为:(-1,3);②当∠PBA=90°时,即PB⊥AB,则设PB所在直线解析式为:,将B(0,-4)代入得,,此时P点坐标为:(-1,-5);③当∠APB=90°时,设P点坐标为:,由于PA所在直线斜率为:,PB在直线斜率为:,=-1,则此时P点坐标为:,.
    (1)
    解:将B(0,-4),C(2,0)代入,
    得:,
    解得:,
    ∴抛物线的函数解析式为:.
    (2)
    向下平移直线AB,使平移后的直线与抛物线只有唯一公共点D时,此时点D到直线AB的距离最大,此时△ABD的面积最大,
    ∵时,,,
    ∴A点坐标为:(-4,0),
    设直线AB关系式为:,
    将A(-4,0),B(0,-4),代入,
    得:,
    解得:,
    ∴直线AB关系式为:,
    设直线AB平移后的关系式为:,
    则方程有两个相等的实数根,
    即有两个相等的实数根,
    ∴,
    即的解为:x=-2,
    将x=-2代入抛物线解析式得,,
    ∴点D的坐标为:(-2,-4)时,△ABD的面积最大;
    (3)
    ①当∠PAB=90°时,
    即PA⊥AB,则设PA所在直线解析式为:,
    将A(-4,0)代入得,,
    解得:,
    ∴PA所在直线解析式为:,
    ∵抛物线对称轴为:x=-1,
    ∴当x=-1时,,
    ∴P点坐标为:(-1,3);
    ②当∠PBA=90°时,
    即PB⊥AB,则设PB所在直线解析式为:,
    将B(0,-4)代入得,,
    ∴PA所在直线解析式为:,
    ∴当x=-1时,,
    ∴P点坐标为:(-1,-5);
    ③当∠APB=90°时,设P点坐标为:,
    ∴PA所在直线斜率为:,PB在直线斜率为:,
    ∵PA⊥PB,
    ∴=-1,
    解得:,,
    ∴P点坐标为:,
    综上所述,P点坐标为:(-1,3),(-1,-5),,时,△PAB为直角三角形.
    【点睛】
    本题主要考查的是二次函数图象与一次函数、三角形的综合,灵活运用所学知识是解题的关键.
    相关试卷

    2023年中考数学复习专项专练专题20 概率及答案(四川版): 这是一份2023年中考数学复习专项专练专题20 概率及答案(四川版),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年中考数学复习专项专练专题19 统计及答案(四川版): 这是一份2023年中考数学复习专项专练专题19 统计及答案(四川版),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年中考数学复习专项专练专题09 反比例函数及答案(四川版): 这是一份2023年中考数学复习专项专练专题09 反比例函数及答案(四川版),共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023年中考数学复习专项专练专题10 二次函数及答案(四川版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map