![2023年中考数学复习专项专练专题07 不等式与不等式组及答案(四川版)01](http://img-preview.51jiaoxi.com/2/3/13974422/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学复习专项专练专题07 不等式与不等式组及答案(四川版)02](http://img-preview.51jiaoxi.com/2/3/13974422/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023年中考数学复习专项专练专题07 不等式与不等式组及答案(四川版)
展开专题07 不等式与不等式组
一、单选题
1.(2020·四川眉山)不等式组的整数解有( )
A.个 B.个 C.个 D.个
【答案】D
【解析】
【分析】
首先分别计算出两个不等式的解集,再根据不等式组的解集的确定规律:大小小大中间找,确定出不等式组的解集,再找出符合条件的整数即可.
【详解】
解:
解不等式①得:x≤2,
解不等式②得:x>﹣.
所以原不等式组的解集为﹣<x≤2.
其整数解为﹣1,0,1,2.共4个.
故选:D.
【点睛】
此题主要考查了解一元一次不等式组,关键是掌握不等式组的解集的确定规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
2.(2020·四川宜宾)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( )
A.2种 B.3种 C.4种 D.5种
【答案】B
【解析】
【分析】
设购买A 型分类垃圾桶x个,则购买B型垃圾桶(6-x),然后根据题意列出不等式组,确定不等式组整数解的个数即可.
【详解】
解:设购买A 型分类垃圾桶x个,则购买B型垃圾桶(6-x)个
由题意得:,解得4≤x≤6
则x可取4、5、6,即有三种不同的购买方式.
故答案为B.
【点睛】
本题考查了一元一次方程组的应用,弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.
3.(2020·四川广元)关于x的不等式的整数解只有4个,则m的取值范围是( )
A. B. C. D.
【答案】C
【解析】
【分析】
不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m的范围即可.
【详解】
解:不等式组整理得:,
解集为m<x<3,
由不等式组的整数解只有4个,得到整数解为2,1,0,-1,
∴-2≤m<-1,
故选:C.
【点睛】
本题主要考查对解一元一次不等式,不等式的性质,解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到-2≤m<-1是解此题的关键.
二、填空题
4.(2021·四川宜宾)不等式2x﹣1>1的解集是______.
【答案】
【解析】
【分析】
根据不等式的基本性质,解不等式即可.
【详解】
解得:
故答案为:.
【点睛】
本题主要考查解不等式的性质,根据不等式的基本性质解不等式是解题的关键.
5.(2021·四川泸州)关于x的不等式组恰好有2个整数解,则实数a的取值范围是_________.
【答案】
【解析】
【分析】
首先解每个不等式,根据不等式组只有2个整数解,确定整数解的值,进而求得a的范围.
【详解】
解:
解①得,
解②得,
不等式组的解集是.
∵不等式组只有2个整数解,
∴整数解是2,3.
则,
∴
故答案是:
【点睛】
本题考查的是一元一次不等式组的整数解,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
6.(2020·四川攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门票反而合算.
【答案】33
【解析】
【分析】
先求出购买40张票,优惠后需要多少钱,然后再利用5x>160时,求出买到的张数的取值范围再加上1即可.
【详解】
解:设x人进公园,
若购满40张票则需要:40×(5-1)=40×4=160(元),
故5x>160时,
解得:x>32,
∴当有32人时,购买32张票和40张票的价格相同,
则再多1人时买40张票较合算;
∴32+1=33(人);
则至少要有33人去世纪公园,买40张票反而合算.
故答案为:33.
【点睛】
此题主要考查了一元一次不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解决本题的关键.
7.(2021·四川遂宁)已知关于x,y的二元一次方程组满足,则a的取值范围是____.
【答案】.
【解析】
【分析】
根据题目中方程组的的特点,将两个方程作差,即可用含a的代数式表示出,再根据,即可求得的取值范围,本题得以解决.
【详解】
解:
①-②,得
∵
∴,
解得,
故答案为:.
【点睛】
本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键.
8.(2020·四川绵阳)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是_______.
【答案】≤m≤6
【解析】
【分析】
解不等式>﹣x﹣得x>﹣4,据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立,再分m﹣6=0和m﹣6≠0两种情况分别求解.
【详解】
解:解不等式>﹣x﹣得x>﹣4,
∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,
①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;
②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,
∴m﹣6<0,即m<6,
∴不等式(m﹣6)x<2m+1的解集为x>,
∵x>﹣4都能使x>成立,
∴﹣4≥,
∴﹣4m+24≤2m+1,
∴m≥,
综上所述,m的取值范围是≤m≤6.
故答案为:≤m≤6.
【点睛】
本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤和依据及不等式的基本性质.
2023年中考数学复习专项专练专题20 概率及答案(四川版): 这是一份2023年中考数学复习专项专练专题20 概率及答案(四川版),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学复习专项专练专题19 统计及答案(四川版): 这是一份2023年中考数学复习专项专练专题19 统计及答案(四川版),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学复习专项专练专题09 反比例函数及答案(四川版): 这是一份2023年中考数学复习专项专练专题09 反比例函数及答案(四川版),共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。