- 2018年青岛市中考数学试卷【含答案】 试卷 0 次下载
- 2021年青岛市中考数学试卷【含答案】 试卷 0 次下载
2019年青岛市中考数学试题【含答案】
展开2019年青岛市中考数学
一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(3分)﹣的相反数是( )
A.﹣ B.﹣ C.± D.
2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为( )
A.38.4×104km B.3.84×105km C.0.384×10 6km D.3.84×106km
4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是( )
A.8m5 B.﹣8m5 C.8m6 D.﹣4m4+12m5
5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为( )
A.π B.2π C.2π D.4π
6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是( )
A.(﹣4,1) B.(﹣1,2) C.(4,﹣1) D.(1,﹣2)
7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为( )
A.35° B.40° C.45° D.50°
8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
二、填空题(本大题共6小题,每小题3分,共18分)
9.(3分)计算:﹣()0= .
10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为 .
11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是 环.
12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是 °.
13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为 cm.
14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 个小立方块.
三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.
15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.
已知:∠α,直线l及l上两点A,B.
求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.
四、解答题(本大题共9小题,共74分)
16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.
17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.
18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:
9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.
在对这些数据整理后,绘制了如下的统计图表:
睡眠时间分组统计表睡眠时间分布情况
组别 | 睡眠时间分组 | 人数(频数) |
1 | 7≤t<8 | m |
2 | 8≤t<9 | 11 |
3 | 9≤t<10 | n |
4 | 10≤t<11 | 4 |
请根据以上信息,解答下列问题:
(1)m= ,n= ,a= ,b= ;
(2)抽取的这40名学生平均每天睡眠时间的中位数落在 组(填组别);
(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.
19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).
(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)
20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.
(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?
21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.
(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.
22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y与销售单价x之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?
(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?
23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?
问题探究:
为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.
探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.
探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.
探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图⑤,在a×2的方格纸中,共可以找到 个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有 种不同的放置方法.
探究四:
把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?
如图⑥,在a×3的方格纸中,共可以找到 个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有 种不同的放置方法.
……
问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)
问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到 个图⑦这样的几何体.
24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?
(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;
(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.
参考答案
1.D.2.D.3.B.4.A.5.B.6.D.7.A.8.C.
9.2+1.10..11.8.5.12.54.13.6﹣.14.4
15.解:如图,△ABC为所作.
16.解:(1)原式=÷
=×=;
(2)
由①,得x≥﹣1,由②,得x<3.
所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.
17.解:这个游戏对双方不公平.
理由:列表如下:
| 1 | 2 | 3 | 4 |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | (3,2) | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,
故小明获胜的概率为:=,则小刚获胜的概率为:=,
∵≠,∴这个游戏对两人不公平.
18.解:(1)7≤t<8时,频数为m=7;
9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%
(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组
(3)该校学生中睡眠时间符合要求的人数为800×=440(人);
答:估计该校学生中睡眠时间符合要求的人数为440人.
19.解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,
则CE∥DF,
∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,
在Rt△BDF中,∵∠BDF=32°,BD=80,
∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,
∴BE=EF﹣BF=,
在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,
∴AB=AE+BE=+≈134m,
答:木栈道AB的长度约为134m.
20.解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5
化简得600×1.5=600+5×1.5x
解得x=40∴1.5x=60
经检验,x=40是分式方程的解且符合实际意义.
答:甲每天加工60个零件,乙每天加工,40个零件.
(2)设甲加工了x天,乙加工了y天,则由题意得
由①得y=75﹣1.5x③
将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.
21.(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,
∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,
在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);
(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:
∵AC=2OA,AC=2AB,∴AB=OA,
∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,
同理:CF⊥OD,∴AG∥CF,∴EG∥CF,
∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,
∴四边形EGCF是平行四边形,
∵∠OEG=90°,∴四边形EGCF是矩形.
22.解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,
将点(30,100)、(45,70)代入一次函数表达式得:,
解得:,
故函数的表达式为:y=﹣2x+160;
(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,
∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,
∴当x=50时,w由最大值,此时,w=1200,
故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;
(3)由题意得:(x﹣30)(﹣2x+160)≥800,
解得:x≤70,
∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.
23.解:探究三:
根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的 2×2方格,
根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为a﹣1,4a﹣4;
探究四:
与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a,有(a﹣1)条边长为2线段,
同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)=(2a﹣2)个位置不同的2×2方格,根据探究一,在在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为2a﹣2,8a﹣8;
问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;
问题拓展:发现图⑦示是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a、b、c,则分别可以找到(a﹣1)、(b﹣1)、(c﹣1)条边长为2的线段,所以在a×b×c的长方体共可以找到(a﹣1)(b﹣1)(c﹣1)位置不同的2×2×2的正方体,再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a×b×c的长方体中共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体;故答案为8(a﹣1)(b﹣1)(c﹣1).
24.解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,
∴AC==6(cm),
∵OD垂直平分线段AC,∴OC=OA=3(cm),∠DOC=90°,
∵CD∥AB,∴∠BAC=∠DCO,
∵∠DOC=∠ACB,∴△DOC∽△BCA,∴==,∴==,
∴CD=5(cm),OD=4(cm),
∵PB=t,PE⊥AB,
易知:PE=t,BE=t,
当点E在∠BAC的平分线上时,
∵EP⊥AB,EC⊥AC,∴PE=EC,∴t=8﹣t,∴t=4.
∴当t为4秒时,点E在∠BAC的平分线上.
(2)如图,连接OE,PC.
S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)
=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)
=﹣t2+t+16(0<t<5).
(3)存在.
∵S=﹣(t﹣)2+(0<t<5),∴t=时,四边形OPEG的面积最大,最大值为.
(4)存在.如图,连接OQ.
∵OE⊥OQ,∴∠EOC+∠QOC=90°,
∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴=,
∴=,
整理得:5t2﹣66t+160=0,
解得t=或10(舍弃)∴当t=秒时,OE⊥OQ.
2011年青岛市中考数学试题和答案: 这是一份2011年青岛市中考数学试题和答案,共6页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
2023年山东省青岛市中考二摸数学试题(含答案解析): 这是一份2023年山东省青岛市中考二摸数学试题(含答案解析),共25页。
2023年山东省青岛市市南区中考三模数学试题(含答案): 这是一份2023年山东省青岛市市南区中考三模数学试题(含答案),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。