|试卷下载
搜索
    上传资料 赚现金
    2022-2023学年湖北省十堰市联合体高一上学期11月期中联考数学试题(解析版)
    立即下载
    加入资料篮
    2022-2023学年湖北省十堰市联合体高一上学期11月期中联考数学试题(解析版)01
    2022-2023学年湖北省十堰市联合体高一上学期11月期中联考数学试题(解析版)02
    2022-2023学年湖北省十堰市联合体高一上学期11月期中联考数学试题(解析版)03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年湖北省十堰市联合体高一上学期11月期中联考数学试题(解析版)

    展开
    这是一份2022-2023学年湖北省十堰市联合体高一上学期11月期中联考数学试题(解析版),共12页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年湖北省十堰市联合体高一上学期11月期中联考数学试题

     

    一、单选题

    1.已知集合,则(  )

    A B

    C D

    【答案】C

    【分析】根据集合的交集运算可得答案.

    【详解】,则.

    故选:C.

    2.命题的否定是(  )

    A B

    C D

    【答案】D

    【分析】由存在量词命题的否定可得出合适的选项.

    【详解】由存在量词命题的否定可知,原命题的否定为”.

    故选:D.

    3.下列图形能表示函数的图象的是(  )

    A B

    C D

    【答案】B

    【分析】利用函数的定义逐项判断,可得出合适的选项.

    【详解】对于A选项,当时,一个对应两个值,不满足函数的定义;

    对于B选项,对于定义内每一个,都有唯一的与之对应,满足函数的定义;

    对于C选项,存在一个,有无数个与之对应,不满足函数的定义;

    对于D选项,当时,有两个与之对应,不满足函数的定义.

    故选:B.

    4.使}成立的一个充分不必要条件是(  )

    A B

    C D

    【答案】B

    【分析】根据充分不必要条件的定义和集合间的包含关系判断可得答案.

    【详解】对于A,因为,故错误;

    对于B,因为,故正确;

    对于C,因为,故错误;

    对于D,因为不是的真子集,故错误.

    故选:B.

    5.幂函数的图象过点,则下列说法正确的是(  )

    A.偶函数,单调递增区间 B.偶函数,单调递减区间

    C.偶函数,单调递增区间 D.奇函数,单调递增区间

    【答案】C

    【分析】根据题意求得幂函数解析式,再求定义域,奇偶性和单调区间即可.

    【详解】设幂函数为,则

    解得,所以,定义域为,关于原点对称,

    ,故为偶函数;显然其单调增区间为.

    故选:C.

    6.不等式的解集为(  )

    A B

    C D

    【答案】A

    【分析】根据分式不等式的解法,转化为一元二次不等式求解即可.

    【详解】因为等价于

    所以,等价于

    解得

    故不等式的解集为.

    故选:A

    7,不等式恒成立,则a的取值范围为(  )

    A B

    C D

    【答案】C

    【分析】对参数分类讨论,结合二次不等式恒成立列出不等关系,求解即可.

    【详解】时,原不等式等价于恒成立,满足题意;

    时,显然不恒成立;

    时,需,解得:

    综上所述,.

    故选:C.

    8.设R上的奇函数,且在上单调递增,,则不等式的解集是(  )

    A B

    C D

    【答案】B

    【分析】由奇函数性质可得,结合单调性及复合函数性质即可列不等式求解

    【详解】R上的奇函数,且在上单调递增,

    上单调递增,

    时,得

    ,得,或,解得

    不等式的解集是.

    故选:B

     

    二、多选题

    9.下列命题中是全称量词命题并且是真命题的是(  )

    A

    B

    C.菱形的对角线互相垂直

    D.每个正方形都是轴对称图形

    【答案】ACD

    【分析】逐项判定命题的真假和是否全称量词命题可得答案.

    【详解】对于A,是真命题,是全称量词命题,故A正确;

    对于B,是存在量词命题,故B错误;

    对于C,根据菱形的性质菱形的对角线互相垂直,是真命题,是全称量词命题,故C正确;

    对于D,每个正方形都是轴对称图形,是全称量词命题,是真命题,故D正确.

    故选:ACD.

    10.下列函数既是偶函数又在上单调递减的是(  )

    A B

    C D

    【答案】BC

    【分析】判断函数是否为偶函数,即是判断函数的图象是否关于轴对称,判断是否成立,再判断函数在上的单调性即可.

    【详解】A. 为定义域上的奇函数,故排除A

    B. 为定义域上的偶函数,在上单调递减,故B正确;

    C. |为定义域上的偶函数,且在上单调递减,故C正确;

    D. 为非奇非偶函数,故D不正确,

    故选:BC.

    11.下列结论正确的是(    

    A.糖水加糖更甜可用式子表示,其中

    B.若,则

    C.当时,

    D.当时,的最小值为4

    【答案】BC

    【分析】对于A,利用作差法进行检验,可得答案;

    对于B,利用基本不等式“1”的妙用,可得答案;

    对于CD,利用基本不等式,可得答案;

    【详解】对于A,当时,显然,所以,故A错误;

    对于B

    当且仅当,即,等号成立,故B正确;

    对于C,当时,>0>0,故,当且仅当时等号成立,故C正确;

    对于D,则

    当且仅当,即,即时等号成立,取得最大值0,不存在最小值,故D错误;

    故选:BC.

    12.下列说法中正确的是(  )

    A.若函数是奇函数,则

    B.若奇函数上有最小值M,则上有最大值-M

    C.函数的单调递增区间为,

    D.函数的值域为

    【答案】BCD

    【分析】由奇函数性质即可判断,CD需结合对勾函数的图象与性质及基本不等式判断

    【详解】A,奇函数的图象关于原点对称,处不一定有意义,如处无意义,A错;

    B,奇函数的图象关于原点对称,B对;

    CD,当,当且仅当时等号成立,又,即为奇函数,结合对勾函数的图象与性质可知,CD对;

    故选:BCD

     

    三、填空题

    13.已知fx)是奇函数,且,则___________

    【答案】-3

    【分析】根据奇函数的定义,可得答案.

    【详解】解:

     

    故答案为:-3

    14.已知,则的最小值是___________.

    【答案】2+22##22+2

    【分析】首先利用配凑法,将原式配成积为定值的形式,再结合基本不等式以及的范围,即可求解.

    【详解】,知0

    当且仅当时,即,等号成立.

    故答案为:

    15.已知,则___________.

    【答案】7

    【分析】,利用换元法,求得,再求函数值即可.

    【详解】,则t2,所以

    ,故.

    故答案为:.

    16.若在区间上是减函数,则a的取值范围是___________.

    【答案】

    【分析】将函数写成分段函数,根据函数的单调性得解.

    【详解】的减区间为在区间上是减函数,所以

    故答案为:

     

    四、解答题

    17.已知集合

    (1),求

    (2),求实数m的取值范围.

    【答案】(1)

    (2)}

     

    【分析】1)利用一元二次不等式,求得集合,结合交集,可得答案;

    2)根据交集的性质,可得集合包含关系,建立不等式组,可得答案.

    【详解】1,由,则

    .

    2,又

    实数m的取值范因为}

    18.求下列函数的值域.

    (1)

    (2)

    【答案】(1)[02]

    (2)57]

     

    【分析】1)被开方数是二次函数,求出定义域后,由二次函数性质求得被开方数的最大值和最小值,从而得函数值的最大值和最小值,即得值域;

    2)函数式变形后,利用函数的单调性求得值域.

    【详解】1)对于. ,求得

    可得函数的定义域为[13]

    的最大值为2,最小值是0

    所以函数y的值域为[02] .

    2)对于.

    因为,所以在其定义域[35)上单调递减

    时,函数y取得最大值7,当x取值趋于5时,函数y的值趋于5,故函数的值域为(57]

    19.某公司计划用固定高度为1.2米的不锈钢网围成一个一边靠墙(墙的长度没有限制)的矩形花园.不锈钢网每米300元,其余费用不记.设花园的长(平行于墙)为xm,宽为ym.

    (1)若花园面积为72m2,则长、宽为何值时,可使费用最少?最少费用多少?

    (2)若总费用不超过18000元,则所围的花园最大面积为多少.

    【答案】(1)花园的长x12m,宽y6m时,可使所用不锈钢网总长最小,费用最少,最少费用为7200

    (2)最大面积450平方米

     

    【分析】1)依据题意,建立不等式,利用基本不等式即可求解.

    2)首先将面积表达式根据题意列出来,然后利用不等式即可求解.

    【详解】1)由已知可得,不锈钢网总长为..

    ,当且仅当,即时等号成立

    花园的长x12m,宽y6m时,可使所用不锈钢网总长最小,费用最少,最少费用为7200

    2)总费用不超过18000元,则不锈钢网总长不超过60米,

    ,可得.

    当且仅当,即时等号成立.所以总费用不超过18000元时,所围的花园最大面积450平方米

    20.已知函数为奇函数,且

    (1)fx);

    (2)求证:fx)在区间[1+∞)上单调递增;

    (3)若对任意的都有,求实数m的取值范围.

    【答案】(1)

    (2)证明见解析;

    (3).

     

    【分析】(1)根据奇函数的概念求出参数,再检验,即可求解;

    (2)(1),利用定义法直接证明即可;

    (3)根据(2)可得,即,解之即可.

    【详解】1)由fx)为奇函数,定义域为

    可得,即,解得.

    ,有,所以

    对任意,满足fx)为奇函数.

    综上:.

    2)对任意x1,有

    ,可得

    ,即

    所以fx)在[1+∞)上单调递增;

    3)由fx)在[1+∞)上单调递增.

    可得对任意

    因为对任意的都有.

    所以,解得

    即实数m的取值范围是.

    21.已知不等式的解集为

    (1)的值;

    (2)时,恒成立,求实数的取值范围.

    【答案】(1)

    (2)

     

    【分析】1)依题意为方程的两根,利用韦达定理得到方程组,解得即可;

    2)参变分离可得,对恒成立,利用基本不等式求出的最小值,即可得解.

    【详解】1)解:因为不等式的解集为

    所以为方程的两根,

    所以,解得.

    2)解:由题意,恒有恒成立,

    两边同除以

    ,则

    ,当且仅当,即时,

    所以实数的取值范围为

    22.已知函数R上奇函数,且时,

    (1)

    (2)若函数在区间上单调递增,求实数的取值范围;

    (3)若函数在区间上值域为,求实数的取值范围.

    【答案】(1)

    (2)

    (3).

     

    【分析】1)设,则,然后根据已知的解析式和奇函数的定义可求出时的解析式,从而可得

    2)画出函数图象结合图象求解;

    3)由图象当时,求出的根,再结合图象求解即可.

    【详解】1)设,则.

    所以

    又因为fx)为奇函数,所以,即

    于是当时,

    所以.

    2)函数的图象如图所示.要使在区间上单调递增,

    结合的图象知,所以

    故实数a的取值范围是

    3时,,则,得

    所以

    因为

    所以结合上图知,值域为a的取值范围为:.

     

    相关试卷

    2022-2023学年高一上学期10月十堰市联合体期中联考数学试卷(附答案): 这是一份2022-2023学年高一上学期10月十堰市联合体期中联考数学试卷(附答案),共5页。

    2022-2023学年湖北省十堰市联合体高一上学期10月期中联考数学试卷扫描版含解析: 这是一份2022-2023学年湖北省十堰市联合体高一上学期10月期中联考数学试卷扫描版含解析,共10页。

    2022-2023学年湖北省十堰市联合体高一上学期10月期中联考数学试卷 扫描版: 这是一份2022-2023学年湖北省十堰市联合体高一上学期10月期中联考数学试卷 扫描版,共10页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map