|学案下载
搜索
    上传资料 赚现金
    微专题 参变分离法解决导数问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练
    立即下载
    加入资料篮
    微专题 参变分离法解决导数问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练01
    微专题 参变分离法解决导数问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练02
    微专题 参变分离法解决导数问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练03
    还剩35页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    微专题 参变分离法解决导数问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练

    展开
    这是一份微专题 参变分离法解决导数问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练

    微专题:参变分离法解决导数问题【考点梳理】1.分离变量法在处理含参的函数不等式和方程问题时,有时可以将变量分离出来,如将方程,转化为这样就将把研究含参函数与轴的位置关系的问题转化为不含参的函数与动直线的位置关系问题,这种处理方法就叫分离变量法。(1)优点:分离变量法可以将含参函数中的参数分离出去,避免直接讨论,从而简化运算;(2)解题过程中可能遇到的问题:①参数无法分离;②参数分离后的函数过于复杂;③讨论位置关系时可能用到的函数极限,造成说理困难.2.分类:分离参数法有完全分离参数法(全分参)和部分分离参数法(半分参)两种注意事项:无论哪种分参方法,分参过程中需注意变量的正负对不等号的影响!【典例分析】典例1.已知.(1)若函数在区间内单调递增,求实数的取值范围;(2)若在区间上存在单调递增区间,求实数的取值范围.典例2.已知函数,曲线在点处的切线的斜率为4.(1)求切线的方程;(2)若关于的不等式恒成立,求实数的取值范围.典例3.已知函数.(1)讨论的零点个数;(2)证明:.典例4.已知函数.(1)求函数的最小值;(2)若不等式对于恒成立,求的取值范围.【双基达标】5.已知,曲线在处切线过点.(1)求的值;(2)当时,,求的取值范围.6.已知函数.(1)若,求曲线在点处的切线方程;(2)若当时,恒成立,求a的取值范围.7.已知函数(1)当时,证明函数有两个极值点;(2)当时,函数在上单调递减,证明8.已知函数的一个极值点为.(1)求函数的极小值;(2)若函数,当时,,求实数的取值范围.9.已知函数.(1)若,不等式恒成立,求的取值范围;(2)若曲线存在过点的切线,求证:.10.已知函数.(1)若,证明:;(2)设函数,若有两个不同的实数根,且,证明:.【高分突破】11.已知函数,.(1)若函数是增函数,求实数a的取值范围;(2)当a=0时,设函数,证明:恒成立.12.已知函数(,e为自然对数的底数).(1)若在处的切线与直线平行,求的极值;(2)当时,,求m的取值范围.13.已知函数,.(1)当时,求函数的单调区间;(2)若有且仅有两个不相等实根,求实数的取值范围.14.已知函数,曲线在点处的切线方程为.(1)求a,b的值;(2)若不等式在上恒成立,求实数m的取值范围.15.已知函数,.(1)若函数在区间内单调递增,求实数a的取值范围;(2)若,且,求证:.16.已知函数,函数.(1)求的单调区间;(2)当时,若与的图象在区间上有两个不同的交点,求k的取值范围.17.已知函数 的图象在点 ( 为自然对数的底数) 处的切线斜率为 .(1)求实数 的值;(2)若 , 且存在 使 成立, 求 的最小值.18.已知函数.(1)当时,求曲线在处的切线方程;(2)设函数,若在其定义域内恒成立,求实数的最小值;(3)若关于的方程恰有两个相异的实根,求实数的取值范围,并证明.19.已知函数.(1)若,求函数的极小值.(2)存在,使得成立,求实数的取值范围.20.已知函数(1)讨论函数零点的个数;(2)对任意的恒成立,求实数的取值范围.21.已知函数.(1)当时,证明:在定义域上是增函数;(2)记是的导函数,,若在内没有极值点,求a的取值范围.(参考数据:,.)22.已知函数(1)令,若时,恒成立,求实数的取值范围;(2)当时.证明:23.已知函数(1)当时,求函数f(x)的单调区间;(2)若函数在上有两个极值点,求实数的取值范围.24.已知函数.(1)讨论函数的单调性;(2)若对于任意的,都有,求整数的最大值.25.已知函数,为自然对数的底数.(1)当时,①求函数在处的切线方程;②求函数的单调区间;(2)若有且只有唯一整数,满足,求实数的取值范围.26.已知函数,.(1)对任意,使得是函数在区间上的最大值,试求最大的实数.(2)若,对于区间的任意两个不相等的实数、,且,都有成立,求的取值范围.27.已知函数.(1)若恒成立,求的最小值;(2)求证:;(3)已知恒成立,求的取值范围.28.已知函数.(1)讨论函数在上的单调性;(2)若,求证:关于x的不等式在上恒成立.29.已知,.(1)求在处的切线方程;(2)若不等式对任意成立,求的最大整数解.30.已知函数的图象在点处的切线与直线平行(e是自然对数的底数).(1)求函数的解析式;(2)若在上恒成立,求实数k的取值范围. 参考答案1.(1);(2).【解析】【分析】(1)函数求导后,函数在区间内单调递增,转换成在上恒成立,孤立参数得,转换成求函数最大值,从而得实数的取值范围;(2)函数求导后,在区间上存在单调递增区间转换成在上能成立,孤立参数得,转换成求函数最小值,从而得实数的取值范围.(1)解:,在区间内单调递增在上恒成立,在上恒成立,在上恒成立,,在,则的取值范围是:.(2)解:在上存在单调递增区间,则在上有解,即在上有解,,又,.则的取值范围是:.2.(1)(2)【解析】【分析】(1)根据导数的几何意义先求解的值,然后得到切点坐标,即可得到切线的方程;(2)化简不等式,分离常数,即,构造函数,利用导数求解函数的最大值即可.(1)解:函数的定义域为,,由题意知,,所以,故,所以,切点坐标为故切线的方程为.(2)解:由(1)知,,所以,可化为:,即在上恒成立,令,则,当时,,在上单调递增,当时,,在上单调递减,所以当时,函数取得最大值,故当时,在上恒成立,所以实数的取值范围是.3.(1)答案不唯一,具体见解析(2)证明见解析【解析】【分析】(1)函数零点个数问题转化为方程根的个数问题,转化为函数交点个数问题.(2)通过换元简化问题,再利用构造函数来证明.(1)令,则,设当时,时,,∴在上单调递减,在上单调递增,∴,∵时,;当时,且时,,∴当上时,无零点,当或时,有一个零点,当时,有两个零点.(2)设,则,即证,即证,即证:,设,则,当时,,当时,,∴在单调递减,在单调递增,∴,∴,当且仅当时“=”成立,由(1)知,当时,存在,使得∴∴.【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.4.(1)1;(2).【解析】【分析】(1)按照函数求最值步骤求解即可;(2)对于含参不等式的恒成立,需要分析式子的结构,转化成函数最值求解问题即可.(1)解:求导:       即当解得当解得的单调递减区间为;单调递增区间为       函数的最小值为(2)解:由(1)得,所以要使得恒成立,必须满足:       下面证明:当时恒成立       只需证明设,则由(1)得且只在取等号当时,,单调递减当时,,单调递增.综上.       解法二:(变量分离)整理得:       只需       先证明:,构造,,当时,,单调递增从而证明得       当仅且当即处取得等号..       解法三:(不分离)得下面证明当时,       只需证明设,则       由(1)得且只在取等号当时,,单调递减当时,,单调递增.综上.5.(1);(2).【解析】【分析】(1)求出,即求出了切点的坐标,再求导,并求出的值,即求出了切线的斜率,由点斜式写出切线方程,再代入点求解即可;(2)由题意可得在上恒成立,令,将问题转化为求函数在上的最小值即可.(1)解:因为,,所以,所以,所以函数在处切线方程为:,又因为切线过点,所以,解得;(2)由(1)可知,又因为当时,,所以在上恒成立,令,则,,令,则,令,易得 在上单调递增,又因为,,所以,使,当时,;当时,,所以在上单调递减,在上单调递增,又因为,.所以当时,;当时,,所以在上单调递减,在上单调递增,所以,所以,故的取值范围为:.6.(1)(2)【解析】【分析】(1)根据导数的几何意义求出曲线在点处的切线斜率,再由点斜式求切线方程;(2)化简不等式,通过讨论的范围分离变量,再利用导数求函数的最值可得a的取值范围.(1)因为,所以 又,所以切线方程为,即(2)由知,因为所以,当时,,当时,,当时,构造函数,当时,,单调递增,当时,,单调递减,故时,,因此当,单调递减,当时,,单调递增,故时,,因此综上:【点睛】对于恒成立问题,常用到以下两个结论:(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min.7.(1)证明见解析(2)证明见解析【解析】【分析】(1)构造函数求导,利用零点存在性定理,判断根的分布,进而可得函数的单调性,即可得极值.(2)分离参数,转化为恒成立,构造函数,利用放缩法和分类讨论即可求解.(1)定义域为当时令∵时,,单调递减,时,,单调递增所以使此时时,,单调递增,时,,单调递减时,,单调递增∴是函数的两个极值点.(2)∵在上单调递减∴恒成立∴恒成立①时,令∵,∴∴在单调递减,∴又∵∴,∴②时,,∵,∴∴,∴又∵,∴令令,∴∴单调递减,∵使,即时,单调递增时,单调递减∴∴∴,∴综上【点睛】本题考查导数的综合应用,极值点,不等式的证明,参数的取值范围,利用导数判断函数的单调性是基本操作,导函数符号对函数单调性的影响,以及零点存在性定理,适当的放缩,把双变量问题通过放缩变成单变量问题.8.(1)(2)【解析】【分析】(1)直接求导,由解得,再确定单调性,求出极小值即可;(2)将题设转化为在上恒成立,整理后对的范围分类讨论,参变分离后转化为最值问题即可.(1),,解得,则,,当或时,单增,当时,单减,故在处取得极小值,极小值为;(2)当时,等价于在上恒成立,整理得,当时,显然成立;当时,,令,,当时,单增,则,故,即;当时,,由上知,当时,单增,当时,单减,则,故,即;综上可得.9.(1)(2)证明见解析【解析】【分析】(1)对原不等式进行参变分离,得到,进而令,从而转化为求出的最大值即可;(2)设出原函数的切点,利用导函数找出在切点处斜率,从而找.进而构造函数找出范围.(1)由已知有恒成立,即代表恒成立,因为,故恒成立,令,故,令,解得:,故在上单调递增,在上单调递减,故在的最大值为,故,所以的取值范围是;(2)证明:设切点为,又因为,所以函数在处的切线斜率,所以函数在处的切线方程为:,又切线经过点.故可得:,化简整理可得:,令,,令,解得,故在上单调递减,单调递增,故在的最小值为,故:,得证.10.(1)证明见解析(2)证明见解析【解析】【分析】(1)由,列出与的关系式,利用指数对数的运算性质进行化简与放缩即可证明;(2)把化成的形式,根据导数确定的单调性与极值,画出简图,确定与1的大小关系,利用(1)的结论,可以得到与的关系,进而可证得结论.(1)证明:由,得,则有,所以;(2)证明:令,化简可得,即,,令,,所以在上单调递增且,则即时,时,可得在上单调递减,在单调递增,且有,由下图可知,,,又,即,由(1)可得,又由得,即,由(1)可得,①②相乘可得,即.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.11.(1);(2)证明见解析.【解析】【分析】(1)根据题意可知在上恒成立,进而进行分参得到,然后通过导数方法求出的最大值即可得到答案;(2)分和进行讨论,然后通过导数方法并结合三角函数的有界性得到函数的单调区间,进而证明问题.(1)因为函数为增函数,所以在上恒成立,即在上恒成立.令(x>0),则,当时,,单调递增,当时,,单调递减,∴,∴.(2)当a=0时,,.当时,,设,则,∴单调递增,∴,∴当时,恒成立.当时,设,则,∵,∴,,,∴,单调递增.∴.∴当时,,单调递增,∴,即当时,恒成立.综上,恒成立.【点睛】本题第(2)问较难,且方法比较巧妙,一般来讲,象涵盖指(对)数函数和三角函数的超越函数通常都要分段,并会利用到三角函数的有界性,平常注意对此种题型的归纳总结.12.(1)极小值为,极大值为(2)【解析】【分析】(1)先求导,由解出,代入导数,确定单调性进而求出极值即可;(2)当时显然不成立,当时,分和参变分离,构造函数求出最值,即可求得m的取值范围.(1),则,处的切线与平行,则,即,则,,由得,由得或,在上单调递减,在上单调递增,在处取得极小值,在处取得极大值.(2)由恒成立,,即,①当时,不等式成立;②当时,恒成立,设,则,当,则,当,则,在为单调递增,在为单调递减,,即,③当时, 恒成立,若,由上知,在上单调递增,,即,综上所述的取值范围为.13.(1)单调递增区间为,单调递减区间为;(2)【解析】【分析】(1)求解导函数,再由与的解集,可得函数单调区间;(2)利用参变分离法,令新函数,求导判断单调性,从而得函数的最值,数形结合可得的取值范围.(1)时,,定义域为,,当时,;当时,,所以函数的单调递增区间为,单调递减区间为.(2)由题意,,即有且仅有两个不相等实根,令,,即与的图像有两个交点,,时,,时,,所以在上单调递增,在上单调递减,所以函数的最大值为,又因为时,,时,,所以当时,与的图像有两个交点,所以实数的取值范围为.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.(1),;(2).【解析】【分析】(1)求导,由切线为,可得,运算即得解;(2)参变分离可得,令,求导分析单调性,可得的最小值为,分析即得解.(1)解:∵,∴,∵曲线在点处的切线方程为,∴,解得,.(2)解:由(1)知,∵不等式在上恒成立,∴在上恒成立,即在上恒成立,∴,令,则,由得.∴当时,,为减函数,当时,,为增函数,∴的最小值为,∴,∴实数m的取值范围是.15.(1)(2)证明见解析【解析】【分析】(1)根据条件将问题转化为在上恒成立问题,然后根据函数的单调性求出的范围;(2)根据条件将问题转化为成立问题,令,即成立,再利用函数的单调性证明即可.(1)解:因为的定义域为,所以,若函数在区间递增,则在上恒成立,即在上恒成立,则只需,令,则,当时,,单调递减,即在时取得最小值9,所以,所以a的取值范围为.(2)解:令,,则,.由,且,得,所以,,所以要证成立,只需证,即,即成立即可,令,则需证,由(1)可知时,函数在单调递增,所以,所以成立,所以.【思路点睛】1、一般地,若在区间上可导,且,则在上为单调增(减)函数;反之,若在区间上可导且为单调增(减)函数,则恒成立.2、对于函数不等式的恒成立问题,可构建新函数,再以导数为工具讨论新函数的单调性从而得到新函数的最值,最后由最值的正负得到不等式成立.16.(1)答案见解析;(2)【解析】【分析】(1)求解导函数,然后分类讨论求单调区间;(2)利用参变分离法,将题目条件转化为在上有两个不同的实根,构造函数,求导判断单调性并求解最值,从而得k的取值范围.(1)由题意可得的定义域为,且.①当时,由,得;由,得.故函数的单调递增区间为,单调递减区间为.②当时,由,得;由,得.故函数的单调递减区间为,单调递增区间为.综上,当时,的单调递增区间为,单调递减区间为;当时,的单调递减区间为,单调递增区间为.(2)当时,令,得,即,则与的图象在上有两个不同的交点,等价于在上有两个不同的实根.设,则.由,得;由,得.函数在上单调递增,在上单调递减,故.因为,,且,所以要使在上有两个不同的实根,则,即k的取值范围为.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.17.(1)1(2)4【解析】【分析】(1)先求导,再利用解出即可;(2)先参变分离得到,再构造函数,求导确定单调性后求出的范围,即可求出 的最小值.(1)由题意知:,,解得;(2)由(1)知:,存在 使 成立等价于,令,则,令,则,所以在上单增,又,故存在使,即,故当时,单减,故当时,单增,故,故,又且,故 的最小值为4.18.(1)(2)(3);证明见解析.【解析】【分析】(1)根据题意,,分别求出和求解即可;(2)条件等价于,令求解最大值即可;(3)令,求出的单调性,得到,根据题意求解的范围即可;不妨设,则,,题设即证明成立,构造,求解单调性得到即可求解.(1)当时,,所以,,所以,所以曲线在处的切线方程为:,即(2)由题意得,,因为在其定义域内恒成立,所以在恒成立,即在恒成立,等价于,令,所以,令解得,令解得,所以函数在单调递增,在单调递减,所以,所以,即,故的最小值为.(3)先证明必要性:由得,即,令,则,设,则,因为,所以恒成立,函数在单调递减,而,故在上,,单调递增,在上,,单调递减,所以.故方程恰有两个相异的实根只需:,所以实数的取值范围是;再证明充分性:当时,方程恰有两个相异的实根,条件等价于,即,即与,当,时有两个不同的交点,所以,由上面必要性的证明可知函数在单调递增,在单调递减,所以在时的最大值为:,最小值趋近于负无穷,所以当时,程恰有两个相异的实根,即充分性成立.下证:,不妨设,则,,所以,因为,所以,令,则,所以在上单调递增,所以当时,,即,所以,所以.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.19.(1)1;(2).【解析】【分析】(1)利用导数求的单调性,即可求极值.(2)将问题转化为在上,再应用导数求的最小值,即可求的范围.(1)当时,则,令,得.时,函数的单调递增区间为,时,函数的单调递减区间为;所以函数的极小值为.(2)由题设,在上,设,则,显然当时恒成立,所以在单调递增,则,综上,,故.20.(1)答案见解析(2)【解析】【分析】(1)根据零点的个数可得函数最值的符号,结合零点存在定理可求参数的取值范围;(2)分离参数得到,构造函数,求导确定函数的最小值即可得到的取值范围.(1)函数的定义域为,,若时,,故在上为增函数,此时最多一个零点,舍.若,则,,故在上为增函数;,,故在上为减函数;故,故.当时,,而,故在上有一个零点;下证:当时成立. 设,则,故在上为减函数,故,故当时成立即即,其中所以当时,有,故在上有一个零点,故当时,函数有2个零点.(2)因为,所以对任意的恒成立,等价于在上恒成立.令,则.再令,则,所以在上单调递增.因为,所以有唯一零点,且.所以当时,,当时,.所以函数在上单调递减,在上单调递增.因为,即,则.所以,即.又因为在上单调递增,所以所以,则.所以的取值范围为.【点睛】本题关键点在于对求导后,把导数构造成新的函数再次求导,借助隐零点求出的最小值,进而借助恒成立的内容进行解答.21.(1)证明见解析;(2).【解析】【分析】(1)对函数求导得且,再应用基本不等式求,结合,可确定的符号,即证结论.(2)对求导得且,将问题转化为或在上恒成立,构造,利用导数研究的单调性,进而求区间值域,即可求a的取值范围.(1)由题设,且定义域为,因为,则,当且仅当时等号成立,而,所以,时有,故在上是增函数.(2)由题设,,则且定义域为,因为在内没有极值点,即或,所以或在上恒成立,令,则,当时;当时,令则,,所以在上递增,而,所以在上,故在上递增,而,综上,在上,即,所以,在上,即单调递增,则,故或,即a的取值范围为.【点睛】关键点点睛:第二问,对求导后,将问题转化为或在上恒成立,并构造函数,利用导数研究单调性求值域.22.(1),;(2)证明见解析.【解析】【分析】(1)应用二次求导可得在,上单调递增,即,讨论、研究的单调性及最值,结合题设不等式恒成立求的取值范围;(2)应用分析法将问题转化为证明在上恒成立,构造函数并利用导数研究单调性求极值,即可证结论.(1)由题意,,则,,当时,在,上单调递增,所以,①当,即时,恒成立,故在,上单调递增,所以,解得:,所以;②当,即时,在,上单调递增且,当时,,所以存在,使,即,所以,当时,单调递减,当,时,单调递增,所以,可得,则,由得:,记,,,所以,即在,上单调递增,则有,由上,,综上所述,,.(2)要证,即证,即证,由,即证,令,则,又,所以,当时,单调递减,当时,单调递增,所以在处有极小值,即最小值,故,即当时成立,得证.【点睛】关键点点睛:(1)二次求导得到,讨论参数a研究的单调性,注意过程中隐零点的应用;(2)分析法将问题转化为恒成立问题.23.(1)增区间是,减区间是(2)【解析】【分析】(1)表示出函数的解析式,求解导函数,利用导数的正负研究函数的单调性即可;(2)表示出函数的解析式,求解导函数,将问题转化为有两个不等实根求解,参变分离后,令新函数,求导函数,判断单调性并求解最大值与端点值,即可求得参数范围.(1)当时,,,     当,即时,,当,即时,,所以的增区间是,   减区间是.(2),,由题意在上有两个不等实根,即有两个实根,               设,则,时,,所以时,,单调递增,时,,单调递减,所以,其中,,所以当时,在上有两个实根,即当时,函数在上有两个极值点.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.24.(1)在上单调递减,在上单调递增.(2)4.【解析】【分析】(1)求导函数,分析导函数的符号,可得出原函数的单调性;(2)由已知,将不等式分离参数得恒成立,令,求导函数,由(1)得在上单调递增,且,,根据零点存在定理有,使,即有 ,分析导函数的符号得出函数的单调性和最值,从而求得整数的最大值.(1)解:由题意知,,当时,,单调递减;当时,,单调递增;∴在上单调递减,在上单调递增.(2)解:∵,∴,∴恒成立,令,则;由(1)知,在上单调递增,且,,∴,使,即,∴,当时,,即,单调递减;当时,,即,单调递增;∴,∴,∵,且,∴.25.(1)①;②在上单调递减,在上单调递增(2).【解析】【分析】(1)①,当时,结合导数的几何意义求出,结合点斜式可求切线方程;②由导数的正负可求的单调区间;(2)可令得,分离参数,分与1的关系进行分类讨论,令,结合正负判断单调性,求出最值,再由与最值得关系进一步讨论可求的取值范围.(1)当时,,,①,又,函数在处的切线方程为:,即:;②,由于,当时,,,;当时,,,,函数在上单调递减,在上单调递增;(2)由得,当时,不等式显然不成立;当时,;当时,,设,,函数在和,上为增函数,在和上为减函数,当时,,当时,,①当时,,由得,,又在区间上单调递增,在区间上单调递减,且,,即,,②当时,,由得,,又在区间上单调递减,在区间,上单调递增,且,,解得:,综上所述,的取值范围为.26.(1)2(2)不存在【解析】【分析】(1)将已知转化为在区间上恒成立,利用二次函数的性质及一次函数的可得解;(2)将已知转化,,,构造函数和在区间上是减函数,通过函数的单调性求解即可.(1)是函数在区间上的最大值,区间恒成立,即在区间上恒成立,又,所以只需在区间上恒成立,,函数的对称轴为只需对一切恒成立,记,关于a的单调递减的一次函数,只需,解得,最大的实数为2.(2)当,,求导函数在区间上是减函数,,成立,成立,即,,构造函数和在区间上是减函数.所以,即在区间上恒成立,利用二次函数的性质知的最大值为,即;同理,即在区间上恒成立, 利用二次函数的性质知的最大值为,即;,不存在.【点睛】思路点睛:本题考查的是导数知识在研究函数单调性和极值等方面的综合运用和分析问题解决问题的能力,本题的第一问借助二次函数及一次函数的性质求解;第二问求解时先将已知转化,再构造函数数和,再利用函数的单调性求解参数的范围,考查学生的转化能力与运算求解能力,属于难题.27.(1);(2)证明见解析;(3).【解析】【分析】(1)求恒成立,即等价于,求出的最大值,大于等于的最大值,即可求出的最小值;(2)当时,得,即,,代入化简即可证明.(3)由题意知恒成立,即分离参数后得,再结合第二问的结论,即可求出的取值范围.(1)等价于,令,当时,,当时,.则在上单调递增,在上单调递减,,则,的最小值为.(2)证明:当时,由(1)得,即.令,则,即.(3)恒成立,即恒成立, ,由(2)知恒成立, ,故的取值范围为.28.(1)答案见解析;(2)证明见解析.【解析】【分析】(1)对求导,讨论参数a研究在上的符号,即可确定的单调性;(2)利用导数研究在上单调性可得,应用分析法将问题转化为证明,由已知条件结合导数可得,进一步将问题转化为证明恒成立即可.(1)依题意,得.若,则,,则在上单调递增;若,令,得,则当时,,当时,,∴在上单调递减,在上单调递增.综上,当时,函数在上单调递增;当时,在上单调递减,在上单调递增.(2)令,,则.令,由(1)知,当时,∴,即在上单调递增,∴.欲证,,只需证明.而,即.令,,则,∴当时,即在上单调递增,又当无限接近于1时,函数值接近于0,∴,即,故.故只需证明:,只需证明.令,,则,∴在上单调递增,且当无限接近于1时,函数值接近于0,故有,即,即结论得证.【点睛】关键点点睛:第二问,根据所证结论结合分析法将问题转化为证明,再由已知关系式进一步将问题转化为证.29.(1)(2)【解析】【分析】(1)对函数求导,求与,再代入点斜式求解切线方程;(2)利用参变分离法,将不等式变形,令新函数,求导得,再令新函数,判断单调性与零点所在区间,求解的最小值并化简得到所在区间,从而求解出的最大整数解.(1),所以定义域为,,,,所以切线方程为;(2)时,等价于,令,则,记,时,,所以为上的递增函数,且,,所以,使得,即,所以在上递减,在上递增,且,,所以的最大整数解为;【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.30.(1)(2)【解析】【分析】(1)求导函数,利用导函数的几何意义和两直线平行的条件可求得a得函数的解析式;(2)不等式等价于在上恒成立,进行参变分离得.令,运用导函数的符号,分析函数的单调性,求得其最值,从而求得实数k的取值范围.(1)解:由题意得,所以,又的图象在点处的切线与直线平行,所以,解得,所以.(2)解:在上恒成立,即在上恒成立,因为,所以.令,则.当时,;当时,.所以函数在上单调递减,在上单调递增,所以,故,即实数k的取值范围是.
    相关学案

    新高考数学一轮复习考点精讲讲练学案 参变分离法解决导数问题(含解析): 这是一份新高考数学一轮复习考点精讲讲练学案 参变分离法解决导数问题(含解析),共38页。学案主要包含了考点梳理,典例分析,双基达标,高分突破,思路点睛等内容,欢迎下载使用。

    微专题 分类讨论法解决含参函数单调性问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练: 这是一份微专题 分类讨论法解决含参函数单调性问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练,共37页。学案主要包含了考点梳理,题型归纳,双基达标,高分突破等内容,欢迎下载使用。

    微专题 分堆与分配问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练: 这是一份微专题 分堆与分配问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练,共24页。学案主要包含了考点梳理,题型归纳,双基达标,高分突破等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        微专题 参变分离法解决导数问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map