|试卷下载
搜索
    上传资料 赚现金
    初中数学中考复习 专题15二次函数压轴题汇编(解答50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期)
    立即下载
    加入资料篮
    初中数学中考复习 专题15二次函数压轴题汇编(解答50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期)01
    初中数学中考复习 专题15二次函数压轴题汇编(解答50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期)02
    初中数学中考复习 专题15二次函数压轴题汇编(解答50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期)03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题15二次函数压轴题汇编(解答50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期)

    展开
    这是一份初中数学中考复习 专题15二次函数压轴题汇编(解答50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期),共30页。试卷主要包含了解答题等内容,欢迎下载使用。

    2021年中考数学真题分项汇编【全国通用】(第02期)
    专题15二次函数压轴题汇编(解答50题)
    姓名:__________________ 班级:______________ 得分:_________________
    一、解答题
    1.(2021·广东中考真题)已知抛物线
    (1)当时,请判断点(2,4)是否在该抛物线上;
    (2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;
    (3)已知点、,若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.
    2.(2021·辽宁中考真题)已知函数,记该函数图像为G.
    (1)当时,
    ①已知在该函数图像上,求n的值;
    ②当时,求函数G的最大值;
    (2)当时,作直线与x轴交于点P,与函数G交于点Q,若时,求m的值;
    (3)当时,设图像与x轴交于点A,与y轴交与点B,过B做交直线与点C,设点A的横坐标为a,C点的纵坐标为c,若,求m的值.
    3.(2021·山东中考真题)在平面直角坐标系中,抛物线的顶点为A.
    (1)求顶点A的坐标(用含有字母m的代数式表示);
    (2)若点,在抛物线上,且,则m的取值范围是 ;(直接写出结果即可)
    (3)当时,函数y的最小值等于6,求m的值.
    4.(2021·四川中考真题)如图,在平面直角坐标系中,抛物线交轴于点和,交轴于点,抛物线的对称轴交轴于点,交抛物线于点.


    (1)求抛物线的解析式;
    (2)将线段绕着点沿顺时针方向旋转得到线段,旋转角为,连接,,求的最小值.
    (3)为平面直角坐标系中一点,在抛物线上是否存在一点,使得以,,,为顶点的四边形为矩形?若存在,请直接写出点的横坐标;若不存在,请说明理由;
    5.(2021·江苏中考真题)如图,抛物线与轴交于A(-1,0),B(4,0),与轴交于点C.连接AC,BC,点P在抛物线上运动.
    (1)求抛物线的表达式;
    (2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA45°时,求点P的坐标;
    (3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作轴的垂线交BC于点H,当△PFH为等腰三角形时,求线段PH的长.


    6.(2021·山东)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.
    (1)求抛物线的表达式和AC所在直线的表达式;
    (2)将ABC沿BC所在直线折叠,得到DBC,点A的对应点D是否落在抛物线的对称轴上,若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;
    (3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,BPQ的面积记为S1,ABQ的面积记为S2,求的值最大时点P的坐标.

    7.(2021·四川中考真题)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.
    (1)求抛物线的表达式;
    (2)判断△BCE的形状,并说明理由;
    (3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.

    8.(2021·黑龙江中考真题)如图,抛物线与x轴交于点和点,与y轴交于点C,连接,与抛物线的对称轴交于点E,顶点为点D.

    (1)求抛物线的解析式;
    (2)点P是对称轴左侧抛物线上的一个动点,点Q在射线上,若以点P、Q、E为顶点的三角形与相似,请直接写出点P的坐标.
    9.(2021·湖北中考真题)在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点,顶点的坐标为.


    (1)直接写出抛物线的解析式;
    (2)如图1,若点在抛物线上且满足,求点的坐标;
    (3)如图2,是直线上一个动点,过点作轴交抛物线于点,是直线上一个动点,当为等腰直角三角形时,直接写出此时点及其对应点的坐标
    10.(2021·黑龙江中考真题)如图,抛物线与轴交于除原点和点,且其顶点关于轴的对称点坐标为.

    (1)求抛物线的函数表达式;
    (2)抛物线的对称轴上存在定点,使得抛物线上的任意一点到定点的距离与点到直线的距离总相等.
    ①证明上述结论并求出点的坐标;
    ②过点的直线与抛物线交于两点.证明:当直线绕点旋转时,是定值,并求出该定值;
    (3)点是该抛物线上的一点,在轴,轴上分别找点,使四边形周长最小,直接写出的坐标.
    11.(2021·湖北中考真题)在平面直角坐标系中,抛物线与轴交于点和点,顶点坐标记为.抛物线的顶点坐标记为.

    (1)写出点坐标;
    (2)求,的值(用含的代数式表示);
    (3)当时,探究与的大小关系;
    (4)经过点和点的直线与抛物线,的公共点恰好为3个不同点时,求的值.
    12.(2021·山西中考真题)如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.

    (1)求,,三点的坐标并直接写出直线,的函数表达式;
    (2)点是直线下方抛物线上的一个动点,过点作的平行线,交线段于点.
    ①试探究:在直线上是否存在点,使得以点,,,为顶点的四边形为菱形,若存在,求出点的坐标;若不存在,请说明理由;
    ②设抛物线的对称轴与直线交于点,与直线交于点.当时,请直接写出的长.
    13.(2021·湖南中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如……都是“雁点”.
    (1)求函数图象上的“雁点”坐标;
    (2)若抛物线上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当时.
    ①求c的取值范围;
    ②求的度数;
    (3)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),P是抛物线上一点,连接,以点P为直角顶点,构造等腰,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.

    14.(2021·湖南中考真题)如图,在平面直角坐标系中,平行四边形的边与y轴交于E点,F是的中点,B、C、D的坐标分别为.

    (1)求过B、E、C三点的抛物线的解析式;
    (2)试判断抛物线的顶点是否在直线上;
    (3)设过F与平行的直线交y轴于Q,M是线段之间的动点,射线与抛物线交于另一点P,当的面积最大时,求P的坐标.
    15.(2021·湖南中考真题)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且,,,抛物线的对称轴与直线BC交于点M,与x轴交于点N.
    (1)求抛物线的解析式;
    (2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与相似?若存在,求出点P的坐标,若不存在,请说明理由.
    (3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.
    (4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰?若存在,求出点Q的坐标,若不存在,请说明理由.


    16.(2021·甘肃中考真题)如图,在平面直角坐标系中,抛物线与坐标轴交于两点,直线交轴于点.点为直线下方抛物线上一动点,过点作轴的垂线,垂足为分别交直线于点.


    (1)求抛物线的表达式;
    (2)当,连接,求的面积;
    (3)①是轴上一点,当四边形是矩形时,求点的坐标;
    ②在①的条件下,第一象限有一动点,满足,求周长的最小值.
    17.(2021·四川中考真题)如图,在平面直角坐标系中,已知抛物线经过点和点.
    (1)求这条抛物线所对应的函数表达式;
    (2)点为该抛物线上一点(不与点重合),直线将的面积分成2:1两部分,求点的坐标;
    (3)点从点出发,以每秒1个单位的速度沿轴移动,运动时间为秒,当时,求的值.

    18.(2021·江西中考真题)二次函数的图象交轴于原点及点.


    感知特例
    (1)当时,如图1,抛物线上的点,,,,分别关于点中心对称的点为,,,,,如下表:




    (___,___)









    ①补全表格;
    ②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为.
    形成概念
    我们发现形如(1)中的图象上的点和抛物线上的点关于点中心对称,则称是的“孔像抛物线”.例如,当时,图2中的抛物线是抛物线的“孔像抛物线”.
    探究问题
    (2)①当时,若抛物线与它的“孔像抛物线”的函数值都随着的增大而减小,则的取值范围为_______;
    ②在同一平面直角坐标系中,当取不同值时,通过画图发现存在一条抛物线与二次函数的所有“孔像抛物线”,都有唯一交点,这条抛物线的解析式可能是______.(填“”或“”或“”或“”,其中);
    ③若二次函数及它的“孔像抛物线”与直线有且只有三个交点,求的值.
    19.(2021·天津中考真题)已知抛物线(a,c为常数,)经过点,顶点为D.
    (Ⅰ)当时,求该抛物线的顶点坐标;
    (Ⅱ)当时,点,若,求该抛物线的解析式;
    (Ⅲ)当时,点,过点C作直线l平行于x轴,是x轴上的动点,是直线l上的动点.当a为何值时,的最小值为,并求此时点M,N的坐标.
    20.(2021·湖南中考真题)如图,在平面直角坐标系中,抛物线:经过点和.
    (1)求抛物线的对称轴.
    (2)当时,将抛物线向左平移2个单位,再向下平移1个单位,得到抛物线.
    ①求抛物线的解析式.
    ②设抛物线与轴交于,两点(点在点的右侧),与轴交于点,连接.点为第一象限内抛物线上一动点,过点作于点.设点的横坐标为.是否存在点,使得以点,,为顶点的三角形与相似,若存在,求出的值;若不存在,请说明理由.


    21.(2021·江苏中考真题)如图,二次函数(是实数,且)的图像与轴交于、两点(点在点的左侧),其对称轴与轴交于点,已知点位于第一象限,且在对称轴上,,点在轴的正半轴上,.连接并延长交轴于点,连接.
    (1)求、、三点的坐标(用数字或含的式子表示);
    (2)已知点在抛物线的对称轴上,当的周长的最小值等于,求的值.


    22.(2021·湖北中考真题)抛物线交轴于,两点(在的左边).

    (1)的顶点在轴的正半轴上,顶点在轴右侧的抛物线上.
    ①如图(1),若点的坐标是,点的横坐标是,直接写出点,的坐标;
    ②如图(2),若点在抛物线上,且的面积是12,求点的坐标;
    (2)如图(3),是原点关于抛物线顶点的对称点,不平行轴的直线分别交线段,(不含端点)于,两点,若直线与抛物线只有一个公共点,求证的值是定值.
    23.(2021·山东中考真题)如图,直线分别交轴、轴于点A,B,过点A的抛物线与轴的另一交点为C,与轴交于点,抛物线的对称轴交于E,连接交于点F.
    (1)求抛物线解析式;
    (2)求证:;
    (3)P为抛物线上的一动点,直线交于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与相似?若存在,求点P的横坐标;若不存在,请说明理由.

    24.(2021·广东中考真题)已知二次函数的图象过点,且对任意实数x,都有.
    (1)求该二次函数的解析式;
    (2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
    25.(2021·内蒙古中考真题)如图,在平面直角坐标系中,抛物线经过坐标原点,与x轴正半轴交于点A,点是抛物线上一动点.
    (1)如图1,当,,且时,
    ①求点M的坐标:
    ②若点在该抛物线上,连接OM,BM,C是线段BM上一动点(点C与点M,B不重合),过点C作,交x轴于点D,线段OD与MC是否相等?请说明理由;
    (2)如图2,该抛物线的对称轴交x轴于点K,点在对称轴上,当,,且直线EM交x轴的负半轴于点F时,过点A作x轴的垂线,交直线EM于点N,G为y轴上一点,点G的坐标为,连接GF.若,求证:射线FE平分.

    26.(2021·四川中考真题)如图,抛物线与x轴交于A、B两点,与y轴交于C点,,.

    (1)求抛物线的解析式;
    (2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大.求出点P的坐标
    (3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q.使点P、B、M、Q为顶点的四边形是平行四边形,若存在.请直接写出Q点的坐标;若不存在,请说明理由.
    27.(2021·湖北中考真题)如图,直线与,轴分别交于,,顶点为的抛物线过点.
    (1)求出点,的坐标及的值;
    (2)若函数在时有最大值为,求的值;
    (3)连接,过点作的垂线交轴于点.设的面积为.
    ①直接写出关于的函数关系式及的取值范围;
    ②结合与的函数图象,直接写出时的取值范围.

    28.(2021·江苏中考真题)在平面直角坐标系中,O为坐标原点,直线与x轴交于点B,与y轴交于点C,二次函数的图象过B、C两点,且与x轴交于另一点A,点M为线段上的一个动点,过点M作直线l平行于y轴交于点F,交二次函数的图象于点E.

    (1)求二次函数的表达式;
    (2)当以C、E、F为顶点的三角形与相似时,求线段的长度;
    (3)已知点N是y轴上的点,若点N、F关于直线对称,求点N的坐标.
    29.(2021·湖南中考真题)如图,在直角坐标系中,二次函数的图象与x轴相交于点和点,与y轴交于点C.

    (1)求的值;
    (2)点为抛物线上的动点,过P作x轴的垂线交直线于点Q.
    ①当时,求当P点到直线的距离最大时m的值;
    ②是否存在m,使得以点为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.
    30.(2021·福建中考真题)已知抛物线与x轴只有一个公共点.
    (1)若抛物线过点,求的最小值;
    (2)已知点中恰有两点在抛物线上.
    ①求抛物线的解析式;
    ②设直线l:与抛物线交于M,N两点,点A在直线上,且,过点A且与x轴垂直的直线分别交抛物线和于点B,C.求证:与的面积相等.
    31.(2021·河南中考真题)如图,抛物线与直线交于点A(2,0)和点.


    (1)求和的值;
    (2)求点的坐标,并结合图象写出不等式的解集;
    (3)点是直线上的一个动点,将点向左平移个单位长度得到点,若线段与抛物线只有一个公共点,直接写出点的横坐标的取值范围.
    32.(2021·湖北中考真题)如图,直线与轴交于点,与轴交于点,点为线段的中点,点是线段上一动点(不与点、重合).


    (1)请直接写出点、点、点的坐标;
    (2)连接,在第一象限内将沿翻折得到,点的对应点为点.若,求线段的长;
    (3)在(2)的条件下,设抛物线的顶点为点.
    ①若点在内部(不包括边),求的取值范围;
    ②在平面直角坐标系内是否存在点,使最大?若存在,请直接写出点的坐标;若不存在,请说明理由.


    33.(2021·广西中考真题)已知抛物线:()与轴交点为,(在的左侧),顶点为.


    (1)求点,的坐标及抛物线的对称轴;
    (2)若直线与抛物线交于点,,且,关于原点对称,求抛物线的解析式;
    (3)如图,将(2)中的抛物线向上平移,使得新的抛物线的顶点在直线上,设直线与轴的交点为,原抛物线上的点平移后的对应点为点,若,求点,的坐标.
    34.(2021·湖南中考真题)将抛物线向左平移1个单位,再向上平移4个单位后,得到抛物线.抛物线与轴交于点,,与轴交于点.已知,点是抛物线上的一个动点.


    (1)求抛物线的表达式;
    (2)如图1,点在线段上方的抛物线上运动(不与,重合),过点作,垂足为,交于点.作,垂足为,求的面积的最大值;
    (3)如图2,点是抛物线的对称轴上的一个动点,在抛物线上,是否存在点,使得以点,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,说明理由.
    35.(2021·吉林中考真题)在平面直角坐标系中,抛物线(m为常数)的顶点为A.
    (1)当时,点A的坐标是 ,抛物线与y轴交点的坐标是 .
    (2)若点A在第一象限,且,求此抛物线所对应的二次函数的表达式,并写出函数值y随x的增大而减小时x的取值范围.
    (3)当时,若函数的最小值为3,求m的值.
    (4)分别过点、作y轴的垂线,交抛物线的对称轴于点M、N.当抛物线与四边形PQNM的边有两个交点时,将这两个交点分别记为点B、点C,且点B的纵坐标大于点C的纵坐标.若点B到y轴的距离与点C到x轴的距离相等,直接写出m的值.

    36.(2021·青海中考真题)如图,在平面直角坐标系中,直线与坐标轴交于两点,点在轴上,点在轴上,点的坐标为,抛物线经过点.

    (1)求抛物线的解析式;
    (2)根据图象写出不等式的解集;
    (3)点是抛物线上的一动点,过点作直线的垂线段,垂足为点,当时,求P点的坐标.

    37.(2021·广西中考真题)如图,抛物线与轴交于、两点,且,对称轴为直线.
    (1)求该抛物线的函数达式;
    (2)直线过点且在第一象限与抛物线交于点.当时,求点的坐标;
    (3)点在抛物线上与点关于对称轴对称,点是抛物线上一动点,令,当,时,求面积的最大值(可含表示).


    38.(2021·湖北中考真题)小爱同学学习二次函数后,对函数进行了探究,在经历列表、描点、连线步骤后,得到如
    下的函数图像.请根据函数图象,回答下列问题:

    (1)观察探究:
    ①写出该函数的一条性质:__________;
    ②方程的解为:__________;
    ③若方程有四个实数根,则的取值范围是__________.
    (2)延伸思考:
    将函数的图象经过怎样的平移可得到函数的图象?写出平移过程,并直接写出当时,自变量的取值范围.
    39.(2021·内蒙古)如图,抛物线交x轴于,两点,交y轴于点C,动点P在抛物线的对称轴上.
    (1)求抛物线的解析式;
    (2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及的周长;
    (3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.


    40.(2021·江苏中考真题)学习了图形的旋转之后,小明知道,将点绕着某定点顺时针旋转一定的角度,能得到一个新的点.经过进一步探究,小明发现,当上述点在某函数图像上运动时,点也随之运动,并且点的运动轨迹能形成一个新的图形.
    试根据下列各题中所给的定点的坐标和角度的大小来解决相关问题.


    (初步感知)
    如图1,设,,点是一次函数图像上的动点,已知该一次函数的图像经过点.
    (1)点旋转后,得到的点的坐标为________;
    (2)若点的运动轨迹经过点,求原一次函数的表达式.
    (深入感悟)
    (3)如图2,设,,点反比例函数的图像上的动点,过点作二、四象限角平分线的垂线,垂足为,求的面积.
    (灵活运用)
    (4)如图3,设A,,点是二次函数图像上的动点,已知点、,试探究的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.
    41.(2021·湖南中考真题)如图,已知二次函数的图象经过点且与轴交于原点及点.


    (1)求二次函数的表达式;
    (2)求顶点的坐标及直线的表达式;
    (3)判断的形状,试说明理由;
    (4)若点为上的动点,且的半径为,一动点从点出发,以每秒2个单位长度的速度沿线段匀速运动到点,再以每秒1个单位长度的速度沿线段匀速运动到点后停止运动,求点的运动时间的最小值.
    42.(2021·湖南)已知函数的图象如图所示,点在第一象限内的函数图象上.


    (1)若点也在上述函数图象上,满足.
    ①当时,求的值;
    ②若,设,求w的最小值;
    (2)过A点作y轴的垂线,垂足为P,点P关于x轴的对称点为,过A点作x轴的线,垂足为Q,Q关于直线的对称点为,直线是否与y轴交于某定点?若是,求出这个定点的坐标;若不是,请说明理由.
    43.(2021·黑龙江中考真题)如图,已知抛物线与轴交于点,点,(点在点的左边),与轴交于点,点为抛物线的顶点,连接.直线经过点,且与轴交于点.


    (1)求抛物线的解析式;
    (2)点是抛物线上的一点,当是以为腰的等腰三角形时,求点的坐标;
    (3)点为线段上的一点,点为线段上的一点,连接,并延长与线段交于点(点在第一象限).当且时,求出点的坐标.
    44.(2021·海南中考真题)已知抛物线与x轴交于两点,与y轴交于C点,且点A的坐标为、点C的坐标为.


    (1)求该抛物线的函数表达式;
    (2)如图1,若该抛物线的顶点为P,求的面积;
    (3)如图2,有两动点在的边上运动,速度均为每秒1个单位长度,它们分别从点C和点B同时出发,点D沿折线按方向向终点B运动,点E沿线段按方向向终点C运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t秒,请解答下列问题:
    ①当t为何值时,的面积等于;
    ②在点运动过程中,该抛物线上存在点F,使得依次连接得到的四边形是平行四边形,请直接写出所有符合条件的点F的坐标.
    45.(2021·山东中考真题)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过坐标原点和点,顶点为点.
    (1)求抛物线的关系式及点的坐标;
    (2)点是直线下方的抛物线上一动点,连接,,当的面积等于时,求点的坐标;
    (3)将直线向下平移,得到过点的直线,且与轴负半轴交于点,取点,连接,求证:.

    46.(2021·广西中考真题)在平面直角坐标系中,已知抛物线:交x轴于两点,与y轴交于点.


    (1)求抛物线的函数解析式;
    (2)如图1,点D为第四象限抛物线上一点,连接,过点B作,垂足为E,若,求点D的坐标;
    (3)如图2,点M为第四象限抛物线上一动点,连接,交于点N,连接,记的面积为,的面程为,求的最大值.
    47.(2021·山东中考真题)如图,在平面直角坐标系中,已知抛物线交轴于,两点,交轴于点.

    (1)求该抛物线的表达式;
    (2)点为第四象限内抛物线上一点,连接,过点作交轴于点,连接,求面积的最大值及此时点的坐标;
    (3)在(2)的条件下,将抛物线向右平移经过点时,得到新抛物线,点在新抛物线的对称轴上,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为矩形,若存在,请直接写出点的坐标;若不存在,请说明理由.
    参考:若点、,则线段的中点的坐标为.
    48.(2021·内蒙古中考真题)已知抛物线
    (1)通过配方可以将其化成顶点式为__________,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在x轴__________(填上方或下方),即__________0(填大于或小于)时,该抛物线与x轴必有两个交点;
    (2)若抛物线上存在两点,,分布在x轴的两侧,则抛物线顶点必在x轴下方,请你结合A、B两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了便于说明,不妨设且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)
    (3)利用二次函数(1)(2)结论,求证:当,时,.
    49.(2021·湖北中考真题)抛物线()与轴相交于点,且抛物线的对称轴为,为对称轴与轴的交点.
    (1)求抛物线的解析式;
    (2)在轴上方且平行于轴的直线与抛物线从左到右依次交于、两点,若是等腰直角三角形,求的面积;
    (3)若是对称轴上一定点,是抛物线上的动点,求的最小值(用含的代数式表示).

    50.(2021·黑龙江中考真题)综合与探究
    如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,连接BC,,对称轴为,点D为此抛物线的顶点.

    (1)求抛物线的解析式;
    (2)抛物线上C,D两点之间的距离是__________;
    (3)点E是第一象限内抛物线上的动点,连接BE和CE.求面积的最大值;
    (4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.



    相关试卷

    初中数学中考复习 专题50圆(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版): 这是一份初中数学中考复习 专题50圆(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题15二次函数压轴题汇编(解答50题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期): 这是一份初中数学中考复习 专题15二次函数压轴题汇编(解答50题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期),共169页。试卷主要包含了解答题等内容,欢迎下载使用。

    初中数学中考复习 专题14二次函数解答压轴题(共32题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期): 这是一份初中数学中考复习 专题14二次函数解答压轴题(共32题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期),共17页。试卷主要包含了解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map