初中数学中考复习 专题14二次函数的应用(解答30题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期)
展开2021年中考数学真题分项汇编【全国通用】(第02期)
专题14二次函数的应用(解答30题)
姓名:__________________ 班级:______________ 得分:_________________
一、解答题
1.(2021·山东中考真题)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.
(1)当甲车减速至9m/s时,它行驶的路程是多少?
(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?
2.(2021·湖北中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.
3.(2021·湖北中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).
(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?
(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.
4.(2021·湖北中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:,下表是某4个月的销售记录.每月销售量(万件)与该月销售价x(元/件)之间成一次函数关系.
月份 | … | 二月 | 三月 | 四月 | 五月 | … |
销售价x(元件) | … | 6 | 7 | 7.6 | 8.5 | … |
该月销售量y(万件) | … | 30 | 20 | 14 | 5 | … |
(1)求y与x的函数关系式;
(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?
(3)当销售价x定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)
5.(2021·贵州中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用(万元)与月销售量(辆)()满足某种函数关系的五组对应数据如下表:
4 | 5 | 6 | 7 | 8 | |
0 | 0.5 | 1 | 1.5 | 2 |
(1)请你根据所给材料和初中所学的函数知识写出与的关系式________;
(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y=(每辆原售价--进价)x,请你根据上述条件,求出月销售量为多少时,销售利润最大?最大利润是多少?
6.(2021·山东中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
(1)求甲、乙两种商品每箱各盈利多少元?
(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?
7.(2021·广东中考真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
(1)求猪肉粽和豆沙粽每盒的进价;
(2)设猪肉粽每盒售价x元表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
8.(2021·广东深圳市·中考真题)某科技公司销售高新科技产品,该产品成本为8万元,销售单价x(万元)与销售量y(件)的关系如下表所示:
x(万元) | 10 | 12 | 14 | 16 |
y(件) | 40 | 30 | 20 | 10 |
(1)求y与x的函数关系式;
(2)当销售单价为多少时,有最大利润,最大利润为多少?
9.(2021·湖北中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本(元)与种植面积(亩)之间满足一次函数关系,且当时,;当时,.
(1)求与之间的函数关系式(不求自变量的取值范围);
(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)
10.(2021·四川中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
(1)求苹果的进价.
(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.
(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入购进支出)
11.(2021·湖南中考真题)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量(单位:万件)与销售单价(单位:元)之间有如下表所示关系:
… | 4.0 | 5.0 | 5.5 | 6.5 | 7.5 | … | |
… | 8.0 | 6.0 | 5.0 | 3.0 | 1.0 | … |
(1)根据表中的数据,在图中描出实数对所对应的点,并画出关于的函数图象;
(2)根据画出的函数图象,求出关于的函数表达式;
(3)设经营此商品的月销售利润为(单位:万元).
①写出关于的函数表达式;
②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?
12.(2021·辽宁)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.
(1)请直接写出y(个)与x(元)之间的函数关系式;
(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?
(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?
13.(2021·湖北中考真题)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体处,另一端固定在离地面高2米的墙体处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度(米)与其离墙体的水平距离(米)之间的关系满足,现测得,两墙体之间的水平距离为6米.
图2
(1)直接写出,的值;
(2)求大棚的最高处到地面的距离;
(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?
14.(2021·贵州中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面可视为抛物线的一部分,在某一时刻,桥拱内的水面宽,桥拱顶点到水面的距离是.
(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;
(2)一只宽为的打捞船径直向桥驶来,当船驶到桥拱下方且距点时,桥下水位刚好在处.有一名身高的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);
(3)如图③,桥拱所在的函数图象是抛物线,该抛物线在轴下方部分与桥拱在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移个单位长度,平移后的函数图象在时,的值随值的增大而减小,结合函数图象,求的取值范围.
15.(2021·吉林中考真题)在平面直角坐标系中,抛物线(m为常数)的顶点为A.
(1)当时,点A的坐标是 ,抛物线与y轴交点的坐标是 .
(2)若点A在第一象限,且,求此抛物线所对应的二次函数的表达式,并写出函数值y随x的增大而减小时x的取值范围.
(3)当时,若函数的最小值为3,求m的值.
(4)分别过点、作y轴的垂线,交抛物线的对称轴于点M、N.当抛物线与四边形PQNM的边有两个交点时,将这两个交点分别记为点B、点C,且点B的纵坐标大于点C的纵坐标.若点B到y轴的距离与点C到x轴的距离相等,直接写出m的值.
16.(2021·广西中考真题)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为轴,过跳台终点作水平线的垂线为轴,建立平面直角坐标系.图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点正上方米处的点滑出,滑出后沿一段抛物线运动.
(1)当运动员运动到离处的水平距离为米时,离水平线的高度为米,求抛物线的函数解析式(不要求写出自变量的取值范围);
(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为米?
(3)当运动员运动到坡顶正上方,且与坡顶距离超过米时,求的取值范围.
17.(2021·浙江)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.
(1)求桥拱项部O离水面的距离.
(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.
①求出其中一条钢缆抛物线的函数表达式.
②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.
18.(2021·河北中考真题)下图是某同学正在设计的一动画示意图,轴上依次有,,三个点,且,在上方有五个台阶(各拐角均为),每个台阶的高、宽分别是1和1.5,台阶到轴距离.从点处向右上方沿抛物线:发出一个带光的点.
(1)求点的横坐标,且在图中补画出轴,并直接指出点会落在哪个台阶上;
(2)当点落到台阶上后立即弹起,又形成了另一条与形状相同的抛物线,且最大高度为11,求的解析式,并说明其对称轴是否与台阶有交点;
(3)在轴上从左到右有两点,,且,从点向上作轴,且.在沿轴左右平移时,必须保证(2)中沿抛物线下落的点能落在边(包括端点)上,则点横坐标的最大值比最小值大多少?
(注:(2)中不必写的取值范围)
19.(2021·四川中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.
(1)写出工厂每天的利润元与降价元之间的函数关系.当降价2元时,工厂每天的利润为多少元?
(2)当降价多少元时,工厂每天的利润最大,最大为多少元?
(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?
20.(2021·贵州中考真题)为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.
(1)根据图象信息,求y与x的函数关系式;
(2)求五一期间销售草莓获得的最大利润.
21.(2021·湖北中考真题)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.
x | 40 | 70 | 90 |
y | 180 | 90 | 30 |
W | 3600 | 4500 | 2100 |
(1)求y关于x的函数解析式(不要求写出自变量的取值范围);
(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;
(3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.
22.(2021·辽宁中考真题)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.
(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)
(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?
(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?
23.(2021·江苏)农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同.以每棵树上桃子的数量x(个)为横坐标、桃子的平均质量y(克/个)为纵坐标,在平面直角坐标系中描出对应的点,发现这些点大致分布在直线AB附近(如图所示).
(1)求直线AB的函数关系式;
(2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式w=y+2.在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?
24.(2021·辽宁中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y(单位:千克)和每千克的售价x(单位:元)满足一次函数关系(如图所示),其中,
(1)求y关于x的函数解析式;
(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?
25.(2021·内蒙古中考真题)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.
(1)求y与x之间的函数解析式,并写出自变量x的取值范围;
(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?
26.(2021·山东潍坊市·中考真题)如图,在直角坐标系中,O为坐标原点,抛物线顶点为M(2,﹣),抛物线与x轴的一个交点为A(4,0),点B(2,),点C(-2,)
(1)判断点C是否在该抛物线上,并说明理由;
(2)顺次连接AB,BC,CO,求四边形AOCB的面积;
(3)设点P是抛物线上AC间的动点,连接PC、AC,△PAC的面积S随点P的运动而变化;当S的值为2时,求点P的横坐标的值.
27.(2021·四川中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中,且x为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;
(1)求y与x之间的函数关系式;
(2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.
28.(2021·辽宁中考真题)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系,(其中,且x为整数)
(1)直接写出y与x的函数关系式;
(2)当售价为多少时,商家所获利润最大,最大利润是多少?
29.(2021·吉林中考真题)如图,在矩形中,,.动点从点出发沿折线向终点运动,在边上以的速度运动;在边上以的速度运动,过点作线段与射线相交于点,且,连接,.设点的运动时间为,与重合部分图形的面积为.
(1)当点与点重合时,直接写出的长;
(2)当点在边上运动时,直接写出的长(用含的代数式表示);
(3)求关于的函数解析式,并写出自变量的取值范围.
30.(2021·天津中考真题)在平面直角坐标系中,O为原点,是等腰直角三角形,,顶点,点B在第一象限,矩形的顶点,点C在y轴的正半轴上,点D在第二象限,射线经过点B.
(Ⅰ)如图①,求点B的坐标;
(Ⅱ)将矩形沿x轴向右平移,得到矩形,点O,C,D,E的对应点分别为,,,,设,矩形与重叠部分的面积为S.
①如图②,当点在x轴正半轴上,且矩形与重叠部分为四边形时,与相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;
②当时,求S的取值范围(直接写出结果即可).
初中数学中考复习 专题65概率(1)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版): 这是一份初中数学中考复习 专题65概率(1)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题30二次函数(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版): 这是一份初中数学中考复习 专题30二次函数(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共24页。试卷主要包含了解答题等内容,欢迎下载使用。
初中数学中考复习 专题15二次函数压轴题汇编(解答50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期): 这是一份初中数学中考复习 专题15二次函数压轴题汇编(解答50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期),共30页。试卷主要包含了解答题等内容,欢迎下载使用。